Topo
pesquisar

Teorema de Pitágoras

Matemática

O teorema de Pitágoras relaciona as medidas dos catetos de um triângulo retângulo à medida de sua hipotenusa.
PUBLICIDADE

O Teorema de Pitágoras é considerado uma das principais descobertas da Matemática. Ele descreve uma relação existente no triângulo retângulo. Vale lembrar que o triângulo retângulo pode ser identificado pela existência de um ângulo reto, isto é, que mede 90º. O triângulo retângulo é formado por dois catetos e a hipotenusa, que constitui o maior segmento do triângulo e localiza-se opostamente ao ângulo reto. Observe:

Catetos: a e b
Hipotenusa: c

Triângulo retângulo de catetos a e b e hipotenusa c
Triângulo retângulo de catetos a e b e hipotenusa c

O Teorema de Pitágoras diz que: “a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.”

a² + b² = c²

Exemplos:

1º) Calcule o valor do segmento desconhecido no triângulo retângulo a seguir.

x² = 9² + 12²
x² = 81 + 144
x² = 225
√x² = √225
x = 15

A descoberta dos números irracionais

Foi por meio do Teorema de Pitágoras que os números irracionais começaram a ser introduzidos na Matemática. O primeiro irracional a surgir foi √2, que apareceu no cálculo da hipotenusa de um triângulo retângulo com catetos medindo 1. Veja:

x² = 1² + 1²
x² = 1 + 1
x² = 2
√x² = √2
x = √2
√2 = 1,414213562373....

2º) Calcule o valor do cateto no triângulo retângulo abaixo:

x² + 20² = 25²
x² + 400 = 625
x² = 625 – 400
x² = 225
√x² = √225
x = 15

3º) Um ciclista acrobático passará de um prédio a outro com uma bicicleta especial e sobre um cabo de aço, como demonstra o esquema a seguir:

Qual é a medida mínima do comprimento do cabo de aço?

Pelo Teorema de Pitágoras, temos:

x² = 10² + 40²
x² = 100 + 1600
x² = 1700
x = 41,23 (aproximadamente)


Por Marcos Noé
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro Da. "Teorema de Pitágoras"; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/teorema-pitagoras.htm>. Acesso em 29 de setembro de 2016.

PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
  • SIGA O BRASIL ESCOLA