Notificações
Você não tem notificações no momento.
Novo canal do Brasil Escola no
WhatsApp!
Siga agora!
Whatsapp icon Whatsapp
Copy icon

Números irracionais

Números irracionais são todos aqueles números cuja representação decimal é uma dízima não periódica. São números irracionais as raízes não exatas, o π, entre outros.

Raiz quadrada de dois representando os números irracionais.
As raízes não exatas são números irracionais.
Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Os números irracionais causaram grande inquietação nos matemáticos durante um longo período. Hoje já bem definido, conhecemos como um número irracional aquele cuja representação decimal é sempre uma dízima não periódica. A principal característica dos irracionais, e que os difere dos números racionais, é que eles não podem ser representados por meio de uma fração.

O estudo dos números irracionais foi aprofundado quando, ao calcular-se problemas envolvendo o teorema de Pitágoras, encontrava-se raízes não exatas. O ato de procurar solução para essas raízes não exatas tornou notável a existência das dízimas não periódicas, ou seja, de números cuja parte decimal é infinita e não possui uma sequência bem definida. Os principais números irracionais são as dízimas não periódicas, as raízes não exatas e o π.

Leia também: Raiz quadrada – caso de radiciação em que o índice do radical é 2

Tópicos deste artigo

Conjunto dos números irracionais

Antes do estudo dos números irracionais, eram estudados os conjuntos dos números naturais, inteiros e racionais. Ao se aprofundar no estudo no triângulo de retângulo, tornou-se notório que existem algumas raízes que não têm solução exata, em particular, foi possível perceber que soluções de raízes não exatas são números conhecidos como dízimas não periódicas.

Em meio a essa inquietação, muitos matemáticos tentaram demonstrar, sem sucesso, que as raízes não exatas são números racionais e que podem ser representados como uma fração, porém o que se percebeu foi que esses números não poderiam ser representados dessa forma. Como, até o momento, o conjunto dos números racionais não contemplava esses números, surgiu a necessidade da criação de um novo conjunto, conhecido como conjunto dos números irracionais.

Um número é irracional quando a sua representação decimal é uma dízima não periódica.


O que são os números irracionais?

Para ser um número irracional, ele tem que satisfazer a definição, ou seja, a sua representação decimal é uma dízima não periódica. A principal característica das dízimas não periódicas é a de não podem ser representadas por meio de uma fração, o que mostra que os números irracionais são o contrário dos racionais.

Os principais números com essa característica são as raízes não exatas.

Exemplos:

a) √2

b) √5

c) √7

d) √13 

Ao procurar soluções de raízes não exatas, ou seja, realizar a representação decimal desses números, sempre encontraremos uma dízima não periódica, o que faz com que esses números sejam elementos do conjunto dos irracionais.

Além das raízes não exatas, existem as dízimas não periódicas em si, por exemplo, se calcularmos as raízes não exatas, encontraremos uma dízima não periódica.

√2 = 1,41421356...

√5= 2,23606797...

Números irracionais são comumente representados por letras gregas, porque não é possível escrever todas as suas casas decimais.

O primeiro deles é o π (lê-se: pi), presente no calculo de área e perímetro de circunferências. Possui valor igual a 3,1415926535…

Além do π, outro número bastante comum é o ϕ (lê-se: fi). Ele é encontrado em problemas envolvendo a proporção áurea. Possui valor igual a 1,618033…

Veja também: Quais são os números primos?

Não pare agora... Tem mais depois da publicidade ;)

Número racional e irracional

Ao analisar os conjuntos numéricos, é importante diferenciar os números racionais e os números irracionais. A união desses dois conjuntos forma um dos conjuntos mais estudados na matemática, o conjunto dos reais, ou seja, o conjunto dos números reais é a junção dos números que podem ser representados como frações (racionais) com os números que não podem ser representados como frações (irracionais).

No conjunto dos números racionais, estão os inteiros, os naturais, os decimais exatos, e as dízimas periódicas.

Exemplos de números racionais:

-60 → número inteiro

2,5 → decimal exato

5,1111111… → dízima periódica

Já os números irracionais são as dízimas não periódicas, logo, não existe nenhum número que seja racional e irracional ao mesmo tempo.

Exemplo de números irracionais:

1,123149… → dízima não periódica

2,769235… → dízima não periódica

Operações com números irracionais

  • Adição e subtração

A adição e a subtração de dois números irracionais geralmente é apenas representada, a menos que seja utilizada uma aproximação decimal desses números, por exemplo:

a) √6 + √5

b) √6 – √5

c) 1,414213… + 3,1415926535…

Não podemos somar ou subtrair os valores por causa dos radicais, então deixamos a operação apenas indicada.

Nas representações decimais, também não é possível realizar a soma exata, logo, para somar dois números irracionais, precisamos de uma aproximação racional, e essa representação é escolhida de acordo com a necessidade de precisão desses dados. Quanto mais casas decimais considerarmos, mais próximos do valor exato da soma ficaremos.

Observação: o conjunto dos números irracionais não é fechado para adição ou subtração, isso significa que a soma de dois números irracionais pode resultar em um número que não seja racional. Por exemplo, se calcularmos a diferença de um número irracional pelo seu oposto, temos que:

a) √2 – √2 = 0

b) π + (-π) = 0

Sabemos que 0 não é um número irracional.

  • Multiplicação e divisão

A multiplicação e divisão de números irracionais pode ser feita caso a representação seja uma radiciação, porém, assim como a adição, na representação decimal, ou seja, multiplicar ou dividir duas dízimas, exige-se uma aproximação racional desse número.

a) √7 · √5 = √35

b) √32 : √2 = √16 = 4

Note também que, no exemplo b, 4 é um número racional, o que significa que a multiplicação e a divisão de dois números irracionais não são fechadas, ou seja, podem ter resultado racional.

Exercícios resolvidos sobre números irracionais

Questão 1 – Analise os números a seguir:

I) 3,1415926535

II) 4,1234510….

III) 2π

IV) 1,123123123…

V) √36

VI) √12

São números irracionais:

A) Somente I, IV e V

B) Somente II, III e VI

C) Somente II, IV e VI

D) Somente I, II, III e VI

E) Somente III, IV, V e VI

Resolução

Alternativa B

I → o número é decimal exato, racional.

II → o número é uma dízima não periódica, irracional.

III → π é irracional, e o seu dobro, ou seja, 2π, também é irracional.

IV → o número é uma dízima periódica, racional.

V → raiz exata, racional.

VI → raiz não exata, irracional.

Questão 2 – Julgue as afirmativas a seguir:

I – O conjunto dos números reais é a união dos racionais e irracionais;

II – A soma de dois números irracionais pode ser um número racional;

III – As dízimas são números irracionais.

Analisando as afirmativas, podemos afirmar que:

A) Somente a afirmativa I é verdadeira.

B) Somente a afirmativa II é verdadeira.

C) Somente a afirmativa III é verdadeira.

D) Somente as afirmativas I e II são verdadeiras.

E) Todas as afirmativas são verdadeiras.

Resolução

Alternativa D

I → Verdadeira, pois a definição do conjunto dos números reais é a união entre os racionais e irracionais.

II → Verdadeira, ao realizarmos a soma de um número pelo oposto dele, teremos como resultado o número 0, que é racional.

III → Falsa, as dízimas não periódicas são irracionais.

Escritor do artigo
Escrito por: Raul Rodrigues de Oliveira Graduado em Matemática pela Universidade Federal de Goiás. Atua como professor do programa PIC Jr. (OBMEP) e como professor preceptor do programa Residência Pedagógica. Também é professor concursado da Seduc-GO, gestor escolar e produtor de conteúdo didático.

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Números irracionais"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/numeros-irracionais.htm. Acesso em 03 de novembro de 2024.

De estudante para estudante


Videoaulas


Lista de exercícios


Exercício 1

Marque a alternativa correta sobre o conjunto dos números irracionais.

A) O conjunto dos números irracionais é uma ampliação do conjunto dos números racionais, contendo os números racionais e também os números que não podem ser escritos como fração.

B) O conjunto dos números irracionais é formado por todos os números que não podem ser escritos na forma de fração. Assim, raízes não exatas e dízimas não periódicas fazem parte desse conjunto.

C) O conjunto dos números irracionais é formado por todos os números que podem ser representados na forma de fração, como os números decimais.

D) O conjunto dos números irracionais e o dos racionais são o mesmo conjunto.

Exercício 2

Dos números irracionais a seguir, qual deles pertence ao intervalo 2 e 3?

A) Π

B) √2

C) √3

D) -3,123124458901...

E) √6

Artigos Relacionados


Comprimento da circunferência

Clique aqui, descubra o que é o comprimento de uma circunferência e conheça sua fórmula.
Matemática

Definição de Conjunto

Definição, representação e introdução à teoria dos conjuntos.
Matemática

Número de Diagonais de um Polígono Convexo

Diagonais de um polígono.
Matemática

Números inteiros

Conheça quais são os números inteiros, como eles são representados, quais subconjuntos esse conjunto engloba, além de conferir exemplos e exercícios.
Matemática

Números reais

Clique aqui e saiba qual é o conjunto dos números reais. Entenda como ele é formado e conheça suas propriedades.
Matemática

Operações com conjuntos

Veja aqui as principais operações entre conjuntos: intersecção, união, diferença e complementar. Confira também exercícios aplicando esses conceitos.
Matemática

Operações com números decimais

Saiba como realizar as quatro operações básicas entre números decimais. Veja os diferentes métodos para realizar a multiplicação e divisão de números decimais.
Matemática

Propriedade dos Paralelogramos

Conhecendo as propriedades dos Paralelogramos.
Matemática

Racionalização de denominadores

Entenda o que é racionalização e como racionalizar o denominador de uma fração. Aprenda a identificar a melhor técnica a ser usada e confira exercícios sobre o tema.
Matemática

Tipos de fração

Clique aqui e saiba quais são os tipos de frações. Aprenda a diferenciar uma fração própria de uma fração imprópria e entenda o que é fração aparente e fração mista.
Matemática