Operações com números decimais

Matemática

PUBLICIDADE

Operações com números decimais são muito presentes no dia a dia. Os números decimais, que fazem parte do conjunto dos números racionais, têm como principal característica a representação de seus elementos na forma de fração, ou seja, todo número que pode ser escrito na forma de uma fração é um número decimal. Como bem sabemos, esse conjunto numérico possui as quatro operações básicas bem definidas: adição, subtração, multiplicação e divisão.

Saiba mais: Operações com conjuntos: quais são e como fazer?

Nomenclatura de números decimais

A fim de facilitar as definições que virão, a seguir estabelecemos algumas nomenclaturas. Um número decimal é formado por sua parte inteira e pela parte decimal. A parte decimal é organizada da seguinte maneira: décimo, centésimo, milésimo, décimo de milésimo, centésimo de milésimo e assim por diante.

Veja o exemplo:

Adição com números decimais

A adição de números decimais é definida de maneira semelhante à adição de números inteiros, nessa operação devemos somar parte inteira com parte inteira, décimos com décimos, centésimos com centésimos, e assim sucessivamente. Em outras palavras, devemos colocar vírgula abaixo de vírgula, veja o exemplo.

Exemplo 1

Vamos determinar a soma dos números 0,65 e 0,792. Lembre-se: o número 0 no final de qualquer número decimal não acresce no valor.

Exemplo 2

Determine o valor da soma 1,442 + 2,4.

As operações com números decimais são indispensáveis para o nosso cotidiano.
As operações com números decimais são indispensáveis para o nosso cotidiano.

Subtração com números decimais

A subtração entre dois números decimais dá-se do mesmo modo que a sua adição, operamos parte inteira com parte inteira, décimos com décimos, e assim sucessivamente. Veja os exemplos.

Exemplo

Determine a diferença entre os números 3,842 e 1,442.

Multiplicação com números decimais

A multiplicação entre dois números decimais pode ser realizada de duas formas: podemos operar de maneira semelhante à da multiplicação de dois números inteiros, somando, ao final, a quantidade de casas decimais dos dois números e colocando-as no resultado; ou podemos transformar os números decimais em frações e utilizar a multiplicação de fração.

Não pare agora... Tem mais depois da publicidade ;)

Vamos lembrar como transformar número decimal em fração?

Transformação de número decimal para forma fracionária

Para escrever um número decimal na sua forma fracionária, devemos conservar o número decimal sem a vírgula no numerador da fração, e no denominador colocamos a potência de 10 de acordo com a quantidade de casas decimais que “andamos” para tornar o número decimal em inteiro. Veja os exemplos.

Exemplo 1

Vamos escrever o número 0,43 em forma de fração. Para a vírgula desaparecer, devemos “andar” duas casas decimais, ou seja, precisamos multiplicar o número por 100. Assim:

Exemplo 2

Para escrever o número 0,8 na sua forma fracionária, devemos andar uma casa decimal, logo:

Exemplo

Utilizando os dois métodos, determine o produto entre 0,42 e 1,2. Antes de efetuar a multiplicação, perceba que 0,42 possui duas casas decimais e que o número 1,20 possui duas delas. A soma disso resulta em quatro casas decimais, ou seja, o resultado deverá ter quatro casas decimais.

Ou seja 0,42 x 1,2 = 0,504.

Agora, transformando os números para sua forma fracionária, temos a seguinte multiplicação:

Leia também: Simplificação de fração: aprenda como fazer

Divisão com números decimais

Na divisão de números decimais também vamos observar dois métodos que podem ser considerados equivalentes. O primeiro método consiste em “andar” a mesma quantidade de casas decimais, ou seja, multiplicar por potências de 10 até que a vírgula não esteja mais presente. O segundo método consiste em representar os números em forma de fração e realizar a divisão de frações.

Exemplo

Vamos realizar a divisão entre os números 0,504 e 1,2.

Com o primeiro método, devemos multiplicar o dividendo e o divisor pelo mesmo número até que a vírgula desapareça.

Para que a vírgula desapareça do denominador, devemos multiplicá-lo por 1000, logo, faremos o mesmo com o divisor.

0,504 · 1000 = 504

1,2 · 1000 = 1200

Armando a conta, temos:

Transformando os números decimais em frações, temos:

 

Por Robson Luiz
Professor de Matemática 

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

LUIZ, Robson. "Operações com números decimais"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/operacoes-com-numeros-decimais.htm. Acesso em 25 de setembro de 2020.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Qual é o resultado da expressão numérica abaixo?

41,32 + 56,4 – 81,932 + 5

a) 102,72

b) 20,8

c) 20,7

d) 20

e) 20,788

Questão 2

Qual é a área de um retângulo cuja largura mede 23,32 m e o comprimento mede 52,25 m?

a) 1217,99 m2

b) 1218,47 m2

c) 1219,01 m2

d) 1567,5 m2

e) 1045,0 m2

Mais Questões