Whatsapp icon Whatsapp
Copy icon

Área de figuras planas

Matemática

Área de uma figura plana é a medida da sua superfície. Para calcular a área da figura plana, foram desenvolvidas fórmulas específicas que dependem do formato da figura.
Fórmula da área do triângulo.
Fórmula da área do triângulo.
PUBLICIDADE

A área de uma figura plana é a medida da superfície da figura. Para calcular a área de uma figura plana, utilizamos uma fórmula específica que depende do formato da figura. As principais figuras planas são o triângulo, o círculo, o quadrado, o retângulo, o losango e o trapézio, e cada um deles possui uma fórmula para o cálculo da área.

Vale ressaltar que a área é estudada na geometria plana, a geometria para objetos bidimensionais. Objetos geométricos que possuem três dimensões são estudados na geometria espacial.

Leia também: Quais as diferenças entre figuras planas e espaciais?

Resumo sobre área de figuras planas

  • A área de uma figura plana é a medida da superfície da figura.

  • As principias figuras planas são:

    • Triângulo

    • Quadrado

    • Retângulo

    • Losango

    • Trapézio

  • Para calcular a área dessas figuras planas, utilizamos as fórmulas:

Fórmulas das áreas do quadrado, retângulo, triângulo, losango e trapézio.

Não pare agora... Tem mais depois da publicidade ;)

Videoaula sobre área de figuras planas

Quais são as principais figuras planas?

Para entender a fórmula da área de cada figura plana, é importante estar a par das principais figuras planas. São elas o triângulo, o quadrado, o retângulo, o losango, o trapézio e o círculo.

  • Triângulo

O triângulo é o polígono mais simples que conhecemos, pois é formado por três lados e três ângulos:

Triângulo.
Triângulo.

O triângulo é o polígono mais simples, por ser o polígono com menor número de lados. No entanto, devido à sua ampla aplicação em situações cotidianas da geometria, ele é muito estudado.

Veja também: Quais são os pontos notáveis de um triângulo?

  • Quadrado

O quadrado é um quadrilátero, ou seja, polígono de quatro lados, que possui todos os ângulos retos e todos os lados congruentes.

Quadrado.
Quadrado.

O quadrado é um quadrilátero regular que possui lados e ângulos congruentes.

  • Retângulo

Conhecemos como retângulo o quadrilátero que possui todos os ângulos retos, ou seja, os quatro ângulos medem 90º.

Retângulo.
Retângulo.

O quadrado é um caso particular de retângulo, pois, além dos ângulos de 90º, ele possui também os lados congruentes. Para ser retângulo, basta ser um quadrilátero que possui todos os ângulos retos.

  • Losango

O losango é um quadrilátero que possui todos os lados congruentes, ou seja, todos os lados têm a mesma medida.

Losango.
Losango.

O quadrado é um caso particular de losango, pois ele também possui todos os lados congruentes. Um elemento muito importante no losango é a sua diagonal.

  • Trapézio

O trapézio é um outro caso particular de quadrilátero. Para ser considerado um trapézio, o quadrilátero precisa ter dois lados paralelos e dois lados não paralelos.

Trapézio.
Trapézio.

Veja também: Quais são os elementos de um polígono?

  • Círculo

O círculo, diferentemente de todas as figuras apresentadas anteriormente, não é um polígono, por não possuir lados. O círculo é a figura plana formada por todos os pontos que estão equidistante do centro.

Círculo.
Círculo.

Fórmulas de área de figuras planas

Cada figura plana possui uma fórmula específica para o cálculo da sua área, vejamos quais são.

  • Área do triângulo

Dado um triângulo, é necessário conhecer a medida da sua base e de sua altura para calcular a área:

Exemplo de um triângulo.

Fórmula para calcular a área do triângulo.

b→ base

h → altura

Exemplo:

Calcule a área de um triângulo que tem base medindo 10 cm e altura igual a 8 cm.

Temos que:

b = 10

h = 8

Substituindo na fórmula, temos que:

Cálculo da área de um triângulo com base medindo 10 cm e altura medindo 8 cm.

  • Videoaula sobre a área do triângulo

  • Área do quadrado

Em um quadrado qualquer, para calcular a sua área, é necessário conhecer a medida de um dos seus lados:

Exemplo de um quadrado.

A = l²

l → lado do quadrado

Exemplo:

Qual é a área de um quadrado que possui lados com 5 cm de comprimento?

A = l²

A = 5²

A = 25 cm²

  • Área do retângulo

Em um retângulo, é necessário conhecer o comprimento da sua base e da sua altura:

Exemplo de um retângulo.

A = b · h

b → base

h → altura

Exemplo:

Calcule a área de um retângulo que possui lados medindo 6 metros e 4 metros

Independentemente do que definirmos como base ou altura, o resultado será o mesmo, então, faremos:

b = 6

h = 4

Desse modo, a área do retângulo é:

A = b · h

A = 6 · 4

A = 24 m²

  • Área do losango

Diferentemente dos anteriores, para calcular a área do losango, é necessário conhecer a medida das suas duas diagonais:

Exemplo de um losango com suas diagonais.

Fórmula para calcular a área do losango.

D → diagonal maior

d → diagonal menor

Exemplo:

Calcule a área de um losango que possui diagonais medindo 16 cm e 12 cm.

Temos que:

D = 16

d = 12

Calculando a área, temos que:

Cálculo da área de um losango cujas diagonais medem 16 cm e 12 cm.

  • Área do trapézio

Como o trapézio possui duas bases, uma maior e uma menor, para calcular a sua área, necessitamos do comprimento das suas bases e da sua altura:

Exemplo de um trapézio.

Fórmula para o cálculo da área de um trapézio.

B → Base maior

b → base menor

h → altura

Exemplo:

Um trapézio possui base maior medindo 10 cm, base menor medindo 6 cm, e altura igual a 8 cm, então, a sua área é de:

Dados:

B = 10

b = 6

h = 8

Substituindo na fórmula, temos que:

Cálculo da área de um trapézio com bases medindo 10 cm e 6 cm, e altura medindo 4 cm.

  • Área do círculo

Em um círculo, para calcular a sua área, precisamos somente do comprimento do raio, em alguns casos, utilizamos uma aproximação para o valor de π de acordo com a quantidade de casas decimais que queremos considerar.

Exemplo de um círculo.

A = πr²

r → raio

Exemplo:

Calcule a área do círculo que possui raio medindo 4 m.

A = πr²

A = π · 4²

A = 16π m²

Leia também: Planificação de sólidos geométricos – representação bidimensional dos sólidos

Exercícios resolvidos sobre a área de figuras planas

Questão 1 - Qual é a área de um losango que possui diagonal menor medindo 5 centímetros, sabendo que a diagonal maior é o triplo da diagonal maior:

A) 35 cm²

B) 37,5 cm²

C) 75 cm²

D) 70 cm²

E) 45 cm²

Resolução

Alternativa B

d → comprimento da diagonal menor

D → comprimento da diagonal maior

Sabendo que a diagonal menor mede 5 cm e que a diagonal maior mede o triplo da menor, então, temos que:

d = 5 e D = 5 · 3 = 15

Agora calculando a área, temos que:

Resolução de exercício com o cálculo da área de um losango com diagonais medindo 15 e 5 cm.

Questão 2 - (IFG 2012) Em um retângulo, a razão entre a medida da altura e a medida da base é de 2/5, e o perímetro desse retângulo mede 42 cm. A área desse retângulo em cm² é igual a:

A) 88

B) 90

C) 91

D) 94

E) 96

Resolução

Alternativa B

Seja 2x a altura e 5x a base, temos que:

P = 2 (2x + 5x) = 42

4x + 10x = 42

14x = 42

x = 42/14

x = 3

Então, os lados medem:

2x = 2 · 3 = 6

5x = 5 · 3 = 15

Agora, basta calcular a sua área:

A = 6 · 15 = 90


Por Raul Rodrigues de Oliveira
Professor de Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Área de figuras planas"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/area-de-figuras-planas.htm. Acesso em 19 de outubro de 2021.

Artigos Relacionados
Leia este artigo para aprender a calcular a área de diferentes sólidos geométricos. Obtenha exemplos ilustrados a respeito de cada um dos cálculos discutidos e também as fórmulas que devem ser usadas. Veja também um método para o cálculo de área daqueles que não possuem fórmula.
Clique para aprender a calcular a área do círculo utilizando a fórmula adequada para isso, que relaciona a área ao raio.
Setor circular, Círculo, área do círculo, área do setor circular, região limitada de um círculo, radiano, demonstração da área do setor circular, segmento circular, coroa circular.
Entenda como se calcula a área do trapézio por meio de exemplos.