Whatsapp icon Whatsapp
Copy icon

Volume do prisma

Matemática

O volume do prisma é obtido pelo produto da área de uma de suas bases por sua altura, operação garantida pelo princípio de Cavalieri.
O volume do prisma reto-retângulo é dado pelo produto da área da base pela altura
O volume do prisma reto-retângulo é dado pelo produto da área da base pela altura
PUBLICIDADE

Os prismas são sólidos geométricos cujas faces laterais são paralelogramos que possuem duas bases poligonais congruentes e paralelas. O volume dos prismas é uma forma de mensurar a quantidade de espaço ocupada por eles a partir de algumas de suas medidas. O volume também é conhecido como capacidade.

A fórmula usada para calcular o volume dos prismas é a seguinte:

V = AB·h

 

Em que:

V = volume do prisma
AB = área da base do prisma
h = altura

A área total das bases é o dobro da área de uma das bases do prisma. Essas bases, como dito anteriormente, são polígonos. Quando esses polígonos forem triangulares ou quadriláteros, será fácil calcular a área. Entretanto, caso sejam outro polígono, o problema em questão deverá propor alguma fórmula ou forma alternativa para que essa área seja calculada.

A estratégia usada para mostrar que a fórmula V = AB·h vale para todo prisma depende do princípio de Cavalieri. De acordo com esse princípio, independentemente do formato da base de um prisma A, sempre existirá um bloco retangular cuja área da base será igual à área da base do prisma A. Sendo assim, se os dois possuírem a mesma altura, terão o mesmo volume. Logo, a fórmula para o cálculo do volume de ambos é a mesma.

Confira a seguir exemplos de cálculo de área de alguns prismas.

Exemplos

1º exemplo – Um bloco retangular possui 15 cm de largura, 10 cm de comprimento e 45 cm de altura. Qual é o volume desse bloco retangular?

Solução: O bloco retangular é um prisma reto cuja base é um retângulo. A largura e o comprimento de um prisma são as dimensões de sua base. Dessa maneira, a base desse prisma é um retângulo cuja “altura” e “base” medem 10 cm e 15 cm, respectivamente. Assim, a área da base AB será:

Não pare agora... Tem mais depois da publicidade ;)

AB = 15·10 = 150 cm2

A partir disso, o volume do prisma será calculado da seguinte forma:

V = AB·h

V = 150·45

V = 6750 cm3

Portanto, o volume desse prisma é de 6750 cm3.

2º exemplo – Calcule o volume de um prisma cuja base é um triângulo equilátero com 18 cm de lado e 30 cm de altura.

Solução: Para calcular a área da base, é necessário calcular a área do triângulo equilátero e multiplicar pela altura do prisma. A área desse triângulo pode ser calculada pela fórmula a seguir. Essa fórmula também pode ser encontrada com mais detalhes e exemplos no texto: Área de um triângulo equilátero.

AB = l2·√3
       4

AB = 182·√3
        4

AB = 324·1,73
       4

AB = 560,52
       4

AB = 140,13 cm2

Assim, a área do prisma será:

V = AB·h

V = 140,13·30

V = 4203,9 cm3

3º exemplo – Calcule o volume do prisma abaixo sabendo que suas bases são regulares.

Prisma de base hexagonal

Solução: Na imagem abaixo, observe a divisão do hexágono regular feita por meio de suas diagonais. Dessa maneira, é possível dividir o hexágono em 6 triângulos equiláteros, cujo lado corresponde a 20 cm. Assim, a área da base desse prisma será igual a 6 vezes a área da do triângulo equilátero de lado 20 cm.

Hexágono dividido em triângulos equiláteros

AB = 6·202·√3
          4

AB = 6·400·1,73
         4

AB = 6·692
          4

AB = 6·173

AB = 1038 cm2

Assim, é possível calcular o volume:

V = AB·h

V = 1038·50

V = 51900 cm3


Por Luiz Paulo Moreira
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "Volume do prisma"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/volume-prisma.htm. Acesso em 27 de setembro de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Qual é o volume do prisma da imagem a seguir, sabendo que ele é um prisma reto e sua base é quadrada?

a) 5760 cm3

b) 5000 cm3

c) 2500 cm3

d) 1080 cm3

e) 480 cm3

Questão 2

Qual o volume de um prisma reto de base hexagonal, sabendo que a base é um polígono regular cujo lado mede 2 centímetros e cujo apótema mede aproximadamente 1,73 centímetros, e que a altura desse prisma é de 25 centímetros.

a) 10,38 cm3

b) 259,5 cm3

c) 129,7 cm3

d) 20,76 cm3

e) 40,86 cm3

Mais Questões
Artigos Relacionados
Área do triângulo cujo valor da altura é desconhecido. Calculando a área do triângulo apenas com as medidas de dois lados e o ângulo formado por eles.
Aprenda mais sobre o cilindro, forma geométrica tridimensional, e conheça a definição formal e as classificações desse sólido geométrico. Aprenda ainda quais são as secções do cilindro, que podem ser transversais ou meridionais. Veja também como as secções podem ser usadas para chegar à fórmula do volume do cilindro.
Aprenda qual é a definição de um paralelogramo e suas propriedades, bem como conheça os principais paralelogramos e as suas fórmulas para área e perímetro.
Saiba o que são os polígonos e quais são seus elementos. Conheça o método de dar nome aos polígonos e como fazemos a soma dos ângulos internos e externos.
Aprenda o que é o princípio de Cavalieri e entenda sua importância para o cálculo do volume de sólidos geométricos. Resolva também os exercícios propostos sobre o tema.
Saiba mais sobre o sólido geométrico conhecido como prisma e aprenda a calcular a sua área total e volume. Veja como diferenciar um prisma reto de um prisma oblíquo.
Clique e conheça a relação de Euler e entenda como essa fórmula relaciona faces, vértices e arestas de um poliedro.
Estudo analítico de retas paralelas. Paralelismo.
Clique e aprenda o que são sólidos geométricos e veja como o conjunto dessas figuras geométricas tridimensionais pode ser classificado em poliedros, corpos redondos e outros. Veja também as subclassificações dos poliedros e corpos redondos e obtenha exemplos desses sólidos geométricos. Clique e aprenda!
Calcule o volume de uma pirâmide. Veja exemplos de como calcular o volume de pirâmides com diferentes bases. Relacione o volume da pirâmide e o do prisma.