PUBLICIDADE
Ponto, reta, plano e espaço são as noções primitivas da Geometria. Esses objetos não possuem definição, mas precisam existir para dar base para as definições geométricas. Embora não seja possível definir esses objetos, é possível discutir suas características, propriedades e suas utilidades para a Geometria.
Ponto
O ponto não possui forma nem dimensão. Isso significa que o ponto é um objeto adimensional. Um dos usos mais importantes do ponto refere-se à localização geográfica. Os pontos são os objetos que melhor representam as localizações porque oferecem precisão. Se, no lugar de ponto, usássemos um quadrado, em que lugar do quadrado estaria a localização precisamente?
Reta
As retas são conjuntos de pontos que não fazem curvas. Elas são infinitas para as duas direções. Como esses pontos não estão no mesmo lugar, é possível medir a distância entre eles. Entretanto, como os pontos continuam não tendo dimensão ou forma, não é possível medir sua largura. Sendo assim, dizemos que a reta possui apenas uma dimensão ou que é unidimensional.
A figura a seguir mostra a tentativa de desenhar um quadrado sobre uma reta. Note que a maior parte do quadrado “não cabe” na reta. Por essa razão, é necessário definir um novo local onde ele possa ser desenhado.
Plano
O plano é um conjunto de retas alinhadas e, portanto, também é um conjunto de pontos. O objeto formado por esse alinhamento de retas é uma superfície plana que não faz curva e infinita para todas as direções.
Em um plano, é possível desenhar figuras que, além de comprimento, possuem largura. A figura abaixo mostra um cubo sobre um plano. Note que a base do cubo, que é um quadrado e possui duas dimensões, encaixa-se perfeitamente no plano. Todavia, a profundidade desse sólido não é contemplada.
Espaço
O espaço é o local onde toda a Geometria conhecida até o Ensino Médio acontece. É formado pelo alinhamento de planos, que são colocados lado a lado até preencher todo o espaço. Ele é infinito para todas as direções e contém todas as figuras e formas geométricas planas e tridimensionais.
Como é formado por planos, o espaço envolve a terceira dimensão, necessária para conter todo o cubo da figura anterior. É na terceira dimensão que são construídas figuras que possuem largura, comprimento e profundidade.
Por Luiz Paulo Moreira
Graduado em Matemática