Topo
pesquisar

Equação do 2º Grau

Matemática

Uma equação do segundo grau possui uma incógnita de expoente 2. O método de Bhaskara é uma opção para encontrar os resultados desse tipo de equação.
PUBLICIDADE

Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:

  • 2x + 1 = 0. O expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.

  • 2x² + 2x + 6 = 0. Há duas incógnitas x nessa equação, e uma delas possui expoente 2. Essa equação é classificada como do 2º grau.

  • x³ – x² + 2x – 4 = 0. Nesse caso, temos três incógnitas x, e o maior expoente – no caso, expoente 3 – torna a equação como do 3º grau.

O que são raízes ou soluções de uma equação do 2º grau?

Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau por meio do método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. As raízes da equação do 2º grau x² – 10x + 24 = 0, por exemplo, são x = 4 ou x = 6, pois:

Substituindo x = 4 na equação, temos:

x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)

Substituindo x = 6 na equação, temos:

x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)

Podemos verificar que os dois valores satisfazem a equação, mas como podemos determinar os valores que tornam a equação uma sentença verdadeira? É essa forma de determinar os valores desconhecidos que abordaremos a seguir.

Método de Bhaskara

Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.

Uma equação do 2º grau possui a seguinte lei de formação: ax² + bx + c = 0, em que a, b e c são os coeficientes. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.

Na fórmula de Bhaskara, utilizaremos somente os coeficientes. Veja:

1º passo: determinar o valor do discriminante ou delta (∆)

∆ = b² – 4 * a * c
∆ = (–2)² – 4 * 1 * (–3)
∆ = 4 + 12
∆ = 16

2º passo:

x = – b ±
      2∙a

x = –(– 2) ± √16
       2∙1

x = 2 ± 4
     2

x' = 2 + 4 = 6 = 3
   2       2

x'' = 2 – 4 = – 2 = – 1
2        2

Os resultados são x’ = 3 e x” = –1.

Exemplo II: Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.

Os coeficientes são:

a = 1
b = 8
c = 16

∆ = b² – 4 * a * c
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0

x = – b ± √∆
     2∙a

x = – 8 ± √0
     2∙1

x' = x'' = –8 = – 4
    2

No exemplo 2, devemos observar que o valor do discriminante é igual a zero. Nesses casos, a equação possuirá somente uma solução ou raiz única.

Exemplo III: Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.

∆ = b² – 4 * a * c
∆ = 6² – 4 * 10 * 10
∆ = 36 – 400
∆ = –364

Nas resoluções em que o valor do discriminante é menor que zero, isto é, o número é negativo, a equação não possui raízes reais.


Por Marcos Noé
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro Da. "Equação do 2º Grau"; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/equacao-2-grau.htm>. Acesso em 27 de maio de 2016.

PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
  • SIGA O BRASIL ESCOLA