PUBLICIDADE
Resolver sistemas lineares é uma tarefa bastante recorrente para estudos nas áreas das ciências da natureza e da matemática. A busca por valores desconhecidos fez com que fossem desenvolvidos métodos de resolução de sistemas lineares, como o método da adição, igualdade e substituição para sistemas que possuem duas equações e duas incógnitas, e a regra de Crammer e o escalonamento, que resolvem sistemas lineares de duas equações, mas que são mais convenientes para sistemas com mais equações. Um sistema linear é um conjunto de duas ou mais equações com uma ou mais incógnitas.
Leia também: Qual a relação entre matrizes e sistemas lineares?
Tópicos deste artigo
- 1 - Equação linear
- 2 - Resolução de sistemas lineares
- 3 - Classificação de sistema linear
- 4 - Exercícios resolvidos
Equação linear
O trabalho com equações existe devido à necessidade de encontrarmos valores desconhecidos de incógnitas. Chamamos de equação quando temos uma expressão algébrica com igualdade, e ela é classificada como linear quando o maior expoente de suas incógnitas é 1, conforme os exemplos a seguir:
2x + y = 7 → equação linear com duas incógnitas
a + 4 = -3 → equação linear com uma incógnita
De modo geral, uma equação linear pode ser descrita por:
a1x1 + a2x2 + a3x3… + anxn = c
Conhecemos como sistema de equação quando há mais de uma equação linear. Começaremos com sistemas lineares de duas incógnitas.
Resolução de sistemas lineares
-
Sistemas lineares com duas equações do 1º grau e duas incógnitas
Para resolver um sistema de duas equações e duas incógnitas, existem vários métodos, os três mais conhecidos são:
- método da comparação
- método da adição
- método da substituição
Qualquer um dos três pode resolver um sistema linear de duas equações e duas incógnitas. Esses métodos não são tão eficientes para sistemas com mais equações, já que existem outros métodos específicos para resolvê-los.
-
Método da substituição
O método da substituição consiste em isolar uma das incógnitas em uma das equações e realizar a substituição na outra equação.
Exemplo:
1º passo: isolar uma das incógnitas.
Chamamos de I a primeira equação e de II a segunda equação. Analisando as duas, vamos escolher a incógnita que esteja mais fácil de ser isolada. Note que, na equação I → x + 2y = 5, o x não possui coeficiente, o que faz com que seja mais fácil isolá-lo, logo, reescreveremos a equação I desta forma:
I → x + 2y = 5
I → x = 5 – 2y
2º passo: substituir I em II.
Agora que temos a equação I com o x isolado, na equação II, podemos substituir x por 5 – 2y.
II → 3x – 5y = 4
Substituindo x por 5 – 2y:
3 (5 – 2y) – 5y = 4
Agora que a equação tem só uma incógnita, é possível resolvê-la para encontrar o valor de y.
Conhecendo o valor de y, encontraremos o valor de x realizando a substituição do valor de y na equação I.
I → x = 5 – 2y
x = 5 – 2 · 1
x = 5 – 2
x = 3
Então a solução do sistema é S = {3,1}.
-
Método da comparação
O método da comparação consiste em isolarmos uma incógnita nas duas equações e igualar esses valores.
Exemplo:
1º passo: seja I a primeira equação e II a segunda, vamos isolar uma das incógnitas em I e II. Escolhendo isolar a incógnita x, temos que:
2º passo: igualar as duas novas equações, já que x = x.
3º passo: substituir o valor de y por -2 em uma das equações.
x = -4 – 3y
x = -4 – 3 (-2)
x = -4 + 6
x = 2
Então a solução desse sistema é o conjunto S = {2,-2}.
Veja também: Quais as diferenças entre função e equação?
-
Método da adição
O método da adição consiste em realizar a multiplicação de todos os termos de uma das equações, de tal modo que, ao somar-se a equação I na equação II, uma de suas incógnitas fique igual a zero.
Exemplo:
1º passo: multiplicar uma das equações para que os coeficientes fiquem opostos.
Note que, se multiplicarmos a equação II por 2, teremos 4y na equação II e -4y na equação I, e que, ao somarmos I + II, teremos 0y, logo, vamos multiplicar todos os termos da equação II por 2 para que isso aconteça.
I → 5x – 4y = -5
2 · II → 2x + 4y = 26
2º passo: realizar a soma I + 2 · II.
3º passo: substituir o valor de x = 3 em uma das equações.
-
Sistemas lineares com três equações do 1º grau e três incógnitas
Quando o sistema possui três incógnitas, adotamos outros métodos de resolução. Todos esses métodos relacionam os coeficientes com matrizes, e os métodos mais utilizados são a regra de Crammer ou o escalonamento. Para a resolução em ambos os métodos, é necessário a representação matricial do sistema, inclusive o sistema 2x2 pode ser representado por meio de uma matriz. Há duas possíveis representações, a matriz completa e a matriz incompleta:
Exemplo:
O sistema
Pode ser representado pela matriz completa
E pela matriz incompleta
-
Regra de Crammer
Para encontrarmos soluções de um sistema 3x3, com incógnitas x, y e z, utilizando a regra de Crammer, é necessário calcularmos o determinante da matriz incompleta e suas variações. Temos então que:
D → determinante da matriz incompleta do sistema.
Dx → determinante da matriz incompleta do sistema, substituindo-se a coluna de x pela coluna dos termos independentes.
Dy → determinante da matriz incompleta do sistema, substituindo-se a coluna de y pela coluna dos termos independentes.
Dz → determinante da matriz incompleta do sistema, substituindo-se a coluna de z pela coluna dos termos independentes.
Dessa forma, para encontrar o valor de suas incógnitas, primeiro precisamos calcular o determinante D, Dx, Dy associado ao sistema.
Exemplo:
1º passo: calcular D.
2º passo: calcular Dx.
3º passo: então podemos encontrar o valor do x, pois:
4º passo: calcular Dy.
5º passo: então podemos calcular o valor de y:
6º passo: agora que conhecemos o valor de x e y, em qualquer uma das linhas podemos encontrar o valor de z substituindo o valor de x e y e isolando o z. Outra opção é calcular Dz.
Substituindo x = 0 e y = 2 na primeira equação:
2x + y – z = 3
2 · 0 + 2 – z = 3
0 + 2 – z = 3
-z = 3 – 2
-z = -1 (-1)
z = -1
Portanto, a solução do sistema é a terna (0,2,-1).
Acesse também: Resolução de problemas por sistemas de equação
-
Escalonamento
Outro método de resolver sistemas lineares é o escalonamento, nele utilizamos somente a matriz completa e operações entre as linhas com o objetivo de isolar as suas incógnitas. Vamos escalonar o sistema a seguir.
1º passo: escrever a matriz completa que represente o sistema.
Seja L1, L2 e L3 respectivamente as linhas 1, 2 e 3 da matriz, vamos realizar operações entre L1 e L2 e L1 e L3, de modo que o resultado faça com que os termos que estão na primeira coluna da segunda e da terceira linhas fiquem iguais a zero.
Analisando a segunda linha da matriz, vamos substituí-la pelo resultado de L2 → -2 · L1 + L2, com objetivo de zerar o termo a21.
a21 = -2 · 1 + 2 = 0
a22 = -2 · 2 + 1 = -3
a23 = -2 · (-3) + 1 = 7
a24 = -2 · 10 + 3 = -17
Então a L2 será 0 -3 7 -17.
Analisando a terceira linha da matriz, vamos substituí-la pelo resultado de L3 → 3L1 + L2, com o objetivo de zerar o termo a31.
a31 = 3 · 1 – 3 = 0
a32 = 3 · 2 + 2 = 8
a33 = 3 · (-3) +1 = -8
a34 = 3 · 10 – 6 = 24
Então a L3 será 0 8 -8 24.
Note que todos são divisíveis por 8, logo, para que a linha L3 fique mais simplificada, vamos dividi-la por 8.
L3 → L3 : 8 será: 0 1 -1 3.
Assim a nova matriz da equação escalonada será:
Agora o objetivo é zerar a coluna y na terceira linha, realizaremos operações entre a L2 e L3, com o objetivo de zerar a segunda coluna de uma delas.
Substituiremos a L3 por L3 → L2 + 3L3.
a31 = 0 + 3 · 0 = 0
a32 = -3 + 3 · 1 = 0
a33 = 7 + 3 · (-1) = 4
a34 = -17 + 3 · 3 = -8
Então L3 será: 0 0 4 -8.
A nova matriz escalonada será:
Agora, ao representarmos essa matriz como um sistema novamente, adicionando x, y e z nas colunas, encontraremos o seguinte:
Podemos então encontrar o valor de cada uma das incógnitas. Analisando a equação III, temos que:
Se z = -2, vamos substituir o valor de z na segunda equação:
Por fim, na primeira equação, vamos substituir o valor de y e z para encontrarmos o valor de x.
Veja também: Sistema de inequações de 1º grau – como resolver?
Classificação de sistema linear
Um sistema linear é um conjunto de equações lineares, podendo ter várias incógnitas e várias equações. Existem vários métodos para resolvê-lo, independentemente da quantidade de equações. Existem três classificações para um sistema linear.
- Sistema possível determinado (SPD): quando possui uma única solução.
- Sistema possível indeterminado (SPI): quando possui infinitas soluções.
- Sistema impossível (SI): quando não existe nenhuma solução.
Exercícios resolvidos
Questão 1 (IFG 2019) Considere a soma das medidas de uma base e da altura relativa a essa base de um triângulo igual a 168 cm e a diferença igual a 24 cm. É correto afirmar que as medidas da base e da altura relativa a essa base medem, respectivamente:
a) 72 cm e 96 cm
b) 144 cm e 24 cm
c) 96 cm e 72 cm
d) 24 cm e 144 cm
Resolução
Alternativa C.
Seja h → altura e b → base, então temos o seguinte sistema:
Pelo método da adição, temos que:
Para encontrar o valor de h, vamos substituir b = 96 cm na primeira equação:
b + h = 168
96 + h = 168
h = 168 – 96
h = 72 cm
Questão 2 A matriz incompleta que representa o sistema linear a seguir é:
Resolução
Alternativa C.
A matriz incompleta é aquela que possui os coeficientes de x, y e z, logo, ela será uma matriz 3x3. Analisando-se as alternativas, a que contém a matriz 3x3 com os sinais corretos é a de letra C.
Por Raul Rodrigues de Oliveira
Professor de Matemática