Notificações
Você não tem notificações no momento.
Whatsapp icon Whatsapp
Copy icon

O que é razão trigonométrica?

O que é razão trigonométrica? É a definição matemática capaz de relacionar os ângulos de um triângulo retângulo às medidas de seus lados.

Lados de um triângulo retângulo a partir dos quais é possível definir razões trigonométricas
Lados de um triângulo retângulo a partir dos quais é possível definir razões trigonométricas
Imprimir
Texto:
A+
A-

PUBLICIDADE

Razão trigonométrica – também chamada de relação trigonométrica – é, grosso modo, o resultado da divisão entre as medidas de dois lados de um triângulo retângulo. As razões trigonométricas são capazes de relacionar os lados com os ângulos de um triângulo retângulo. Se não fosse por elas, só seria possível construir o que conhecemos como relações métricas.

Antes de definir as razões trigonométricas, é importante conhecer a nomenclatura dos lados de um triângulo retângulo.

Triângulo retângulo

Em um triângulo retângulo qualquer, o lado oposto ao ângulo reto – que é o maior lado do triângulo – recebe o nome de hipotenusa. Os outros dois recebem o nome de catetos.

Além disso, fixando o ângulo agudo θ de um triângulo retângulo qualquer, o lado oposto a esse ângulo recebe o nome de cateto oposto, e o lado que toca esse ângulo é chamado de cateto adjacente.

Razões trigonométricas

As razões trigonométricas foram criadas a partir da seguinte observação: Dois triângulos retângulos que possuem um segundo ângulo congruente são semelhantes. Isso significa que, entre esses dois triângulos, as medidas dos lados são proporcionais e as medidas dos ângulos são congruentes. Dessa forma, tomando um ângulo agudo de um triângulo retângulo, a razão entre seus lados terá o mesmo resultado.

Essa informação é importante para a trigonometria porque uma razão trigonométrica relacionada com um determinado ângulo terá um valor fixo para qualquer triângulo, independentemente do tamanho de seus lados, pois, como eles são proporcionais, a razão entre os lados correspondentes será igual.

Dito isso, definiremos as razões trigonométricas seno, cosseno e tangente:

Senθ = Cateto oposto a θ
            Hipotenusa

Cosθ = Cateto adjacente a θ
           Hipotenusa

Tgθ = Cateto oposto a θ
          Cateto adjacente a θ

Um valor para cada ângulo

O seno de um ângulo é invariável independentemente da medida do lado do triângulo de onde esse ângulo foi tirado. O triângulo a seguir foi construído no computador, de modo que possuísse um ângulo reto e outro de 30º, representado pela letra grega θ. As medidas obtidas foram:

Não pare agora... Tem mais depois da publicidade ;)

Calculando o seno de 30°, teremos:

Sen30º = Cateto oposto a θ = 2,31 = 0,5
          Hipotenusa         4,62

O valor 0,5 é o seno de 30° para qualquer triângulo. Isso acontece porque todos os triângulos que possuem dois ângulos congruentes são proporcionais. Nesse exemplo, 0,5 é justamente a razão de proporção encontrada nos triângulos retângulos que possuem um ângulo de 30°.

Tabela trigonométrica

Os cálculos acima podem ser feitos para todos os ângulos “inteiros” - um ângulo também pode ser fracionado. As frações “decimais” são chamadas de minutos e as “centesimais” são chamadas de segundos. Utilizando as razões seno, cosseno e tangente, seria possível construir a seguinte tabela de valores:

Aplicações práticas

Por meio das razões trigonométricas, é possível relacionar os ângulos de um triângulo retângulo com os valores de seus lados. Logo, é possível descobrir a medida de um lado de um triângulo retângulo dispondo apenas das medidas de um de seus ângulos agudos e de um de seus lados. Observe o exemplo:

Calcule o valor do lado de comprimento a no triângulo seguinte:

Nesse triângulo, queremos descobrir o valor do cateto oposto ao ângulo de 60° a partir do valor de seu cateto adjacente. Observando as razões trigonométricas definidas acima, observamos que a única que relaciona o cateto oposto ao cateto adjacente é a tangente. Portanto, utilizaremos essa razão para descobrir o valor de “a”. Procurando a tangente de 60° na tabela anterior, encontramos o valor: 1,732. Observe os cálculos utilizados para descobrir a medida do lado a:

Tg60 =   Cateto oposto a 60   = a
            Cateto adjacente a 60   2

Tg60 = a
           2

1,732 = a
            2

a = 1,732·2

a = 3,464


Por Luiz Paulo Moreira
Graduado em Matemática

Escritor do artigo
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "O que é razão trigonométrica?"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/o-que-e/matematica/o-que-e-razao-trigonometrica.htm. Acesso em 21 de dezembro de 2024.

De estudante para estudante


Videoaulas


Artigos Relacionados


O que são números reais?

Saiba o que são números reais, as relações desses números com outros conjuntos numéricos e suas propriedades básicas!
O que é Matemática?

O que são polígonos convexos e regulares?

Clique para descobrir o que são polígonos convexos e regulares!
O que é Matemática?

O que são quadriláteros?

Clique para aprender o que são quadriláteros e suas propriedades e definições específicas com as quais são construídas suas classificações.
O que é Matemática?

O que são relações métricas no triângulo retângulo?

Clique para aprender o que são as relações métricas no triângulo retângulo e como utilizá-las.
O que é Matemática?

O que são ângulos opostos pelo vértice?

Entenda o que são os ângulos opostos pelo vértice e suas propriedades, além de conferir alguns exemplos.
O que é Matemática?

O que é a lei dos senos?

Clique e descubra o que é a lei dos cossenos e aprenda o modo correto de usá-la a partir de alguns exemplos desse conteúdo.
O que é Matemática?

O que é circunferência?

Clique para aprender o que é circunferência e ampliar seus conhecimentos em Matemática!
O que é Matemática?

O que é círculo trigonométrico?

Clique para aprender o que é o círculo trigonométrico, suas características básicas e como utilizá-lo nos cálculos de seno e cosseno.
O que é Matemática?

O que é círculo?

Clique aqui para saber o que é círculo e entender a diferença entre círculo e circunferência. Saiba como calcular o perímetro e a área do círculo.
O que é Matemática?

O que é geometria?

Clique para descobrir o que é geometria, quais são os conceitos discutidos por ela e alguns fatos históricos interessantes a respeito de seu surgimento.
O que é Matemática?