Whatsapp

Soma de dois cubos

Matemática

PUBLICIDADE

Para entender a soma de dois cubos, é importante compreender que utilizamos o produto de dois polinômios para facilitar as operações e simplificações. No trabalho com polinômios, torna-se necessário conhecer a forma de fatorá-los, e encontrar a fatoração é buscar uma maneira de representar o polinômio como o produto de dois ou mais polinômios. Saber aplicar a fatoração desse polinômio é essencial para simplificar situações-problema que envolvam a soma de dois cubos. Existe uma fórmula utilizada para realizar essa fatoração.

Leia também: Como simplificar uma fração algébrica?

É fundamental conhecer a fórmula utilizada para realizar a fatoração da soma de dois cubos.
É fundamental conhecer a fórmula utilizada para realizar a fatoração da soma de dois cubos.

Como é feita a fatoração da soma de dois cubos?

A fatoração de um polinômio é bastante comum na Matemática e seu objetivo é expressar esse polinômio como o produto de dois ou mais polinômios. A partir dessa representação, é possível realizar simplificações e resolver situações que envolvam, nesse caso, a soma de dois cubos. Para realizar a fatoração, é necessário conhecer a fórmula da soma de dois cubos.

Não pare agora... Tem mais depois da publicidade ;)

Fórmula da soma de dois cubos

Considere a como o primeiro termo e b como o segundo termo e que eles podem ser qualquer número real, então temos que:

a³ + b³ = (a+b)(a² – ab +b²)

Analisando o segundo membro da equação, vamos mostrar que, ao aplicar a propriedade distributiva, podemos encontrar o primeiro membro.

(a+b)(a² – ab +b²) = a³ – a²b +ab² +a²b ab² +b³

 Note que os termos em vermelho e os termos em azul são respectivamente opostos, logo sua soma é igual a zero, restando:

(a+b)(a² – ab +b²) = a³ + b³

Para realizar a fatoração do cubo da diferença, vamos aplicar a fórmula e encontrar os termos a e b, conforme o exemplo a seguir.

Exemplo 1:

Resolver x³ + 27.

Reescrevendo a equação, sabemos que 27=3³, então vamos representar por: x³ + 3³ → soma de dois cubos, em que x é o primeiro termo e 3 é o segundo termo.

Realizando a fatoração utilizando a fórmula, temos que:

x³ + 3³ = (x+3)(x² – x·3 +3²)

x³ + 3³ = (x+3)(x² – 3x +9)

Portanto, a fatoração de x³ + 27 é igual a (x+3)(x² – 3x +9).

Exemplo 2:

Resolver 8x³ + 125.

Reescrevendo a equação, sabemos que 8x³ = (2x)³ e que 125=5³, então vamos representar por: (2x)³ + 5³ → soma de dois cubos, em que 2x é o primeiro termo e 5 é o segundo termo.

Realizando a fatoração utilizando a fórmula, temos que:

(2x)³ + 5³ = (2x +5) ((2x)² – 2x·5+5²)

(2x)³ + 5³ = (2x+5) (4x² – 10x +25)

Portanto, a fatoração de 8x³ + 125 é igual a (2x+5)(4x² – 10x +25).

Veja também: Como somar e subtrair frações algébricas?

Exercícios resolvidos

Questão 1 – Sabendo que a³ + b³ = 1944 e que a+b = 1 e ab = 72, o valor de a²+b² é ?

A) 160

B) 180

C) 200

D) 240

E) 250

Resolução

Alternativa B.

Vamos fatorar a³ + b³.

a³ +b³ = (a+b) (a² – ab + b²)

Agora utilizaremos os dados da questão substituindo a+b, ab e a³ + b³:

Questão 2 – A simplificação da expressão é:

A) 1

B) x+1

C) -3xy

D) x² + y²

E) 5

Resolução

Alternativa A.

 

Por Raul Rodrigues de Oliveira
Professor de Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Soma de dois cubos"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/soma-dois-cubos.htm. Acesso em 11 de maio de 2021.

Artigos Relacionados
Clique e aprenda a calcular a adição e a subtração de frações algébricas, além de obter exemplos detalhados e comentados dessas operações.
Formas de resolver uma equação do 2º grau.
Regra prática e desenvolvimento do Cubo da Soma e Cubo da Diferença.
Fatoração, Fatoração de expressão algébrica, Expressão algébrica, Soma de dois cubos, Diferença de dois quadrados, Diferença, Raiz cúbica, Fatoração com Diferença de dois cubos, Diferença de dois cubos.
Veja os principais métodos de divisão de polinômios por monômios e binômios. Saiba como utilizar o dispositivo prático de Briot-Ruffini para realizar a divisão.
Entenda o que é uma expressão algébrica e aprenda a fatorá-la. Saiba também o que é um monômio e o que é um polinômio.