Notificações
Você não tem notificações no momento.
Novo canal do Brasil Escola no
WhatsApp!
Siga agora!
Whatsapp icon Whatsapp
Copy icon

Expressões algébricas

Expressões algébricas são expressões matemáticas que contêm números e letras. As letras são conhecidas como variáveis e utilizadas para representar valores desconhecidos.

Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

As expressões algébricas são aquelas expressões matemáticas que possuem números e letras, também conhecidas como variáveis. Utilizamos as letras para representar valores desconhecidos ou até mesmo para analisar o comportamento da expressão de acordo com o valor dessa variável. As expressões algébricas são bastante comuns no estudo das equações e na escrita de fórmulas da Matemática e áreas afins.

Caso a expressão algébrica possua um único termo algébrico, ela é conhecida como monômio; quando possui mais de um, é chamada de polinômio. É possível também calcular operações algébricas, que são as operações entre expressões algébricas.

Leia também: Frações algébricas – expressões que apresentam pelo menos uma incógnita no denominador

Tópicos deste artigo

O que é uma expressão algébrica?

Expressões algébricas são compostas por letras e números.
Expressões algébricas são compostas por letras e números.

Definimos como expressão algébrica uma expressão que contém letras e números, separados por operações básicas da Matemática, como a adição e a multiplicação. As expressões algébricas são de grande importância para o estudo mais avançado da Matemática, tornando possível o cálculo de valores desconhecidos nas equações ou até mesmo o estudo de funções. Vejamos alguns exemplos de expressões algébricas:

a) 2x²b + 4ay² + 2
b) 5m³n8
c) x² +2x - 3

As expressões algébricas recebem nomes particulares dependendo da quantidade de termos algébricos que possuem.

Não pare agora... Tem mais depois da publicidade ;)

Monômios

Uma expressão algébrica é conhecida como monômio quando ela possui somente um termo algébrico. Um termo algébrico é aquele que possui letras e números separados apenas por uma multiplicação entre eles.

Um monômio é dividido em duas partes: o coeficiente, que é o número que está multiplicando a letra, e a parte literal, que é a variável com o seu expoente.

Exemplos:

a) 2x³    → coeficiente é igual a 2 e a parte literal é igual a x³.
b) 4ab → coeficiente é igual a 4 e a parte literal é igual a ab.
c) m²n →  coeficiente é igual a 1 e a parte literal é igual a m²n.

Quando as partes literais de dois monômios são iguais, eles são conhecidos como monômios semelhantes.

Exemplos:

a) 2x³ e 4x³ são semelhantes.
b) 3ab² e -7ab² são semelhantes.
c) 2mn e 3mn² não são semelhantes.
d) 5y e 5x não são semelhantes.

Veja também: Adição e subtração de frações algébricas – como calcular?

Polinômios

Quando a expressão algébrica possui muitos termos algébricos, ela é conhecida como polinômio. Um polinômio nada mais é do que a soma ou a diferença entre monômios. É bastante comum o uso de polinômios no estudo de equações e funções, ou na geometria analítica, para descrever as equações de elementos da geometria.

Exemplos:

a)\(2x² + 2x + 3\)
b) 2ab – 4ab² + 2a  - 4b + 1
c) 5mn  - 3
d) 4y² + x³ – 4x + 8

Simplificação de expressões algébricas

Em uma expressão algébrica, quando há termos semelhantes, é possível realizar a simplificação dessa expressão por meio de operações com os coeficientes dos termos semelhantes.

Exemplo:

5xy² + 10x – 3xy + 4x²y – 2x²y² + 5x – 3xy + 9xy² – 4x²y + y

Para simplificar, vamos identificar os termos semelhantes, ou seja, termos que possuem mesma parte literal.

5xy² + 10x – 3xy + 4x²y – 2x²y² + 5x – 3xy + 9xy²5x²y

Realizaremos as operações entre os termos semelhantes, então:

5xy² + 9xy² = 14xy²

10x + 5x = 15x

-3xy – 3xy = -6xy

4x²y -5x²y = -1x²y= -x²y

O termo -2x²y² não possui nenhum termo semelhante a ele, logo a expressão algébrica simplificada será:

-2x²y² + 14xy² + 15x – 6xy -x²y

Operações algébricas

Realizar adição ou subtração de expressões algébricas nada mais é do que simplificar a expressão, portanto só é possível operar com os termos algébricos que são semelhantes. Já na multiplicação, é necessário utilizar a propriedade distributiva entre os termos, conforme os exemplos a seguir:

Exemplo de adição:

(2x² + 3xy – 5) + (3x² – xy + 2)

Como é uma adição, podemos simplesmente remover os parênteses, sem alterar nenhum dos termos:

2x² + 3xy – 5 + 3x² – xy + 2

Agora vamos simplificar a expressão:

5x² +2xy – 3

Exemplo de subtração:

(2x² + 3xy – 5) – (3x² – xy + 2)

Para remover os parênteses, é necessário inverter o sinal de cada termo algébrico da segunda expressão:

2x² + 3xy – 5 –3x² + xy – 2

Agora vamos simplificar a expressão:

– x² + 4xy – 7

Exemplo de multiplicação:

(2x² + 3xy – 5) ( 3x² – xy + 2)

Aplicando a propriedade distributiva, encontraremos:

 6x4 – 2x³y + 4x² + 9x³y – 3x²y² +6xy – 15x² – 5xy + 10

Agora vamos simplificar a expressão:

6x4 + 7x³y – 11x² –3x²y² + xy + 10

Acesse também: Como fazer a simplificação de frações algébricas?

Valor numérico das expressões algébricas

Quando conhecemos o valor da variável de uma expressão algébrica, é possível encontrar o seu valor numérico. O valor numérico da expressão algébrica nada mais é do que o resultado final quando substituímos a variável por um valor.

Exemplo:

Dada a expressão x³ + 4x² + 3x – 5, qual é o valor numérico da expressão quando x = 2.

Para calcular o valor da expressão, vamos substituir o x por 2.

2³ + 4 · 2² + 3 · 2 – 5

8 + 4 · 4 + 6 – 5

8 + 16 + 6 – 5

30 – 5

25

Exercícios resolvidos

Questão 1 – A expressão algébrica que representa o perímetro do retângulo a seguir é:

A) 5x – 5
B) 10x – 10
C) 5x + 5
D) 8x – 6
E) 3x – 2

Resolução

Alternativa B.

Para calcular o perímetro, vamos somar os quatro lados. Sabendo que os lados paralelos são iguais, temos que:

P = 2(2x – 4) + 2 (3x – 1)

P = 4x – 8 + 6x – 2

P = 10x – 10 

Questão 2 – (Enem 2012) Um forro retangular de tecido traz em sua etiqueta a informação de que encolherá após a primeira lavagem, mantendo, entretanto, seu formato. A figura a seguir mostra as medidas originais do forro e o tamanho do encolhimento (x) no comprimento e (y) na largura. A expressão algébrica que representa a área do forro após ser lavado é (5 – x) (3 – y).

Nessas condições, a área perdida do forro, após a primeira lavagem, será expressa por:

A) 2xy
B)15 – 3x
C) 15 – 5y
D) -5y – 3x
E) 5y + 3x – xy

Resolução

Alternativa E.

Para calcular a área de um retângulo, calculamos a área encontrando o produto entre a base e a altura do retângulo. Analisando a parte perdida do forro, é possível dividi-la em dois retângulos, mas existe uma região que pertence aos dois retângulos, logo vamos ter que subtrair a área dessa região.

O retângulo maior tem base 5 e altura y, logo sua área é dada por 5y. O outro triângulo possui base x e altura 3, então sua área é dada por 3x. A região que pertence aos dois retângulos simultaneamente tem base x e altura y, então, como ela está sendo contada nos dois retângulos, vamos subtraí-la da soma das áreas. Assim, a área perdida é dada pela expressão algébrica:

5y + 3x – xy

 

Por Raul Rodrigues Oliveira
Professor de Matemática

Escritor do artigo
Escrito por: Raul Rodrigues de Oliveira Graduado em Matemática pela Universidade Federal de Goiás. Atua como professor do programa PIC Jr. (OBMEP) e como professor preceptor do programa Residência Pedagógica. Também é professor concursado da Seduc-GO, gestor escolar e produtor de conteúdo didático.

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Expressões algébricas"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/expressao-algebrica.htm. Acesso em 03 de novembro de 2024.

De estudante para estudante


Videoaulas


Lista de exercícios


Exercício 1

O valor numérico da expressão ax + a² – a²x + ax² – 2x³ + 3a³, para a = 2 e x = 1, é:

A) 12

B) 19

C) 20

D) 23

E) 27

Exercício 2

Durante a resolução de exercícios sobre expressões algébricas, o professor pediu para que os alunos realizassem a simplificação da expressão 8(3 – 5x) + 4(3x – 6). Se a simplificação for feita  matematicamente, o polinômio encontrado será:

A) 28x + 24

B) -12

C) -14x + 12

D) -28x

E) 52x + 48