Divisão de polinômios é uma das operações básicas no ambiente dos polinômios. Tal operação consiste em encontrar outro polinômio que satisfaça certas condições.
Divisão de polinômios possui diferentes métodos de resolução. Vamos apresentar três métodos para essa divisão: o método de Descartes (coeficientes a determinar), o método da chave e o dispositivo prático de Briot-Ruffini.
Ao dividir um polinômio P (x) por um polinômio D (x) não nulo, em que o grau de P é maior que D (P > D), quer dizer que devemos encontrar um polinômio Q (x) e R (x), de modo que:
Note que esse processo é equivalente a escrever:
P (x) → dividendo
D (x) → divisor
Q (x) → quociente
R (x) → resto
Das propriedades da potenciação, temos que o grau do quociente é igual à diferença entre os graus do dividendo e divisor.
Q = P – D
Ainda, quando o resto da divisão entre P (x) e D (x) é igual a zero, dizemos que P (x) é divisível por D (x).
Uma divisão de polinômios pode ser resolvida com diferentes métodos.
Regras da divisão de polinômios
Método dos coeficientes a determinar — método de Descartes
Para realizar a divisão entre os polinômios P (x) e D (x), com grau de P maior que o grau de D, seguimos os passos:
Passo 1 - Determinar o grau do polinômio quociente Q (x);
Passo 2 - Tomar o maior grau possível para o resto da divisão R (X) (Lembre-se: R (x) = 0 ou R < D);
Passo 3 - Escrever os polinômios Q e R com coeficientes literais, de forma que P (x) = D (x) · Q (x) + R (x).
Exemplo
Sabendo-se que P (x) = 4x3 – x2 + 2 e que D (x) = x2 + 1, determina-se o polinômio quociente e o resto.
O grau do quociente é 1, pois:
Q =P – D
Q =3 – 2
Q = 1
Assim no polinômio Q (x) = a·x +b, o resto R (x) é um polinômio cujo maior grau pode ser 1, logo: R (x) = c ·x +d. Substituindo os dados na condição do passo 3, temos:
Comparando os coeficientes dos polinômios, temos:
Logo, o polinômio Q (x) = 4x-1 e R (x) = -4x + 3.
Não pare agora... Tem mais depois da publicidade ;)
Método da chave
Consiste em realizar a divisão entre polinômios seguindo a mesma ideia da divisão entre dois números, o chamado algoritmo da divisão. Veja o exemplo a seguir.
Novamente vamos considerar os polinômios P (x) = 4x3 – x2 + 2 e D (x) = x2 + 1, e agora vamos dividi-los utilizando o método da chave.
Passo 1 - Completar o polinômio dividendo com coeficientes nulos, caso necessário.
P (x) = 4x3 – x2 + 0x + 2
Passo 2 - Dividir o primeiro termo do dividendo pelo primeiro termo do divisor e, em seguida, multiplicar o quociente por todo divisor. Veja:
Passo 3 - Dividir o resto do passo 2 pelo quociente e repetir esse processo até que o grau do resto seja menor que o grau do quociente.
Vamos considerar os polinômios: P (x) = 4x3 + 3 e D (x) = 2x + 1.
Esse método consiste em desenhar dois segmentos, um horizontal e outro vertical, e nesses segmentos colocamos o coeficiente do dividendo e a raiz do polinômio divisor, além disso, repete-se o primeiro coeficiente. Veja:
Perceba que o menor meio é a raiz do divisor e que o primeiro coeficiente foi divido.
Agora, devemos multiplicar a raiz do divisor pelo termo repetido e somá-lo ao próximo, veja:
O último número encontrado no dispositivo prático é o resto, e os demais são os coeficientes do polinômio quociente. Devemos dividir esses números pelo primeiro coeficiente do divisor, nesse caso por 2. Assim:
Questão1 (UFMG) O polinômio P (x) = 3x5 - 3x4 -2x3 + mx2 é divisível por D (x) = 3x2 - 2x. O valor de m é:
Solução
Como o polinômio P é divisível por D, então podemos aplicar o algoritmo da divisão. Assim,
Como foi dado que os polinômios são divisíveis, então o resto é igual a zero. Logo,
Por Robson Luiz
Professor de Matemática
Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:
LUIZ, Robson.
"Divisão de polinômios"; Brasil Escola.
Disponível em: https://brasilescola.uol.com.br/matematica/divisao-de-polinomios.htm. Acesso em 26 de maio
de 2022.