Whatsapp icon Whatsapp
Copy icon

Probabilidade condicional

Matemática

Probabilidade condicional é usada quando queremos calcular a chance de um determinado evento A acontecer, sabendo que o evento B já aconteceu.
A probabilidade condicional leva em consideração eventos condicionantes.
A probabilidade condicional leva em consideração eventos condicionantes.
PUBLICIDADE

Conhecemos como probabilidade condicional a probabilidade de um determinado evento ocorrer, sabendo que um evento condicionante já aconteceu. Dados dois eventos A e B, inicialmente com o mesmo espaço amostral, a probabilidade condicional é representada por P(A|B) e significa a probabilidade do evento A ocorrer, dado que o evento B ocorreu. Existe uma fórmula específica que ajuda a resolver problemas de probabilidade condicional.

Leia também: Os três erros mais cometidos no cálculo de probabilidade

Resumo sobre a probabilidade condicional

  • A probabilidade condicional é a chance de o evento A acontecer, dado que B já aconteceu.

  • O evento B é conhecido como condicionante, então, calculamos a chance de o evento A acontecer na condição de o evento B ter acontecido.

  • Existem duas fórmulas para calcular a probabilidade condicional.

→ A primeira fórmula da probabilidade condicional é:

Fórmula para calcular a probabilidade condicional a partir do número de probabilidades.

→ Podemos calcular a probabilidade condicional também pela fórmula:

Fórmula para calcular a probabilidade condicional a partir do número da quantidade de elementos.

Não pare agora... Tem mais depois da publicidade ;)

Videoaula sobre probabilidade condicional

Espaço amostral

Para compreender o que é a probabilidade condicional, é importante relembrar o que é o espaço amostral. Em um experimento aleatório, conhecemos como espaço amostral o conjunto com todos os resultados possíveis para esse experimento.

Exemplo 1:

Quando lançamos um dado comum e observamos o resultado da face superior, nosso espaço amostral são os números {1, 2, 3, 4, 5, 6}. O espaço amostral é normalmente representado pelo símbolo Ω (lê-se: ômega), ou seja, nesse caso, Ω = {1, 2, 3, 4, 5, 6}.

Exemplo 2:

Ao realizar o lançamento de uma moeda comum três vezes consecutivas, teremos o seguinte espaço amostral:

Ω = {(cara, cara, cara); (cara, cara, coroa); (cara, coroa, cara); (coroa, cara, cara); (coroa, coroa, cara); (coroa, cara, coroa); (cara, coroa, coroa); (coroa, coroa, coroa)}

Evento

Conhecemos como evento um determinado conjunto de resultados que queremos que ocorra no experimento aleatório, o evento é sempre um subconjunto do espaço amostral.

Exemplo 1:

Ao lançar o dado, queremos que o resultado seja um número primo.

Então, nesse caso, o evento é sair um número primo, e os resultados favoráveis são A = {2, 3, 5}.

Exemplo 2:

Ao lançar o dado, queremos que o resultado seja um número par.

Então, nesse caso, o evento é sair um número par e os resultados favoráveis são B = {2, 4, 6}.

Exemplo 3:

No lançamento da moeda por três vezes sucessivas, queremos que o resultado seja sair cara somente uma vez. Nesse evento, os casos favoráveis são C = {(cara, coroa, coroa); (coroa, cara, coroa); (coroa, coroa, cara)}.

Veja também: O que é o princípio fundamental da contagem?

O que é probabilidade condicional?

A probabilidade condicional é a chance de um determinado evento acontecer tendo como base que um evento aconteceu anteriormente; ambos os eventos possuem o mesmo espaço amostral. Esse evento que ocorreu anteriormente é conhecido como condicionante.

Dizemos que a probabilidade de o evento A acontecer, sabendo que o evento B aconteceu, é conhecida como probabilidade condicional do evento A dado B, representada por P(A|B) (lê-se: probabilidade de A dado B). Essa probabilidade só existe se os eventos possuírem o mesmo espaço amostral (diferente do vazio) e se B não for um evento impossível.

Exemplo 1:

Durante o lançamento de dois dados, queremos calcular a probabilidade de o resultado da soma das faces superiores ser igual a 6, sabendo que o resultado do lançamento dos dados são dois números pares.

Perceba que há dois eventos:

B → As duas faces são números pares.

A → A soma das faces superiores é igual a 6.

Então, queremos a probabilidade P(A|B): P(A soma das faces superiores é 6 | As duas faces são números pares).

Exemplo 2:

Em um conjunto de pessoas, entre homens e mulheres, uma delas será sorteada aleatoriamente. Uma possível probabilidade condicional é a probabilidade de a pessoa sorteada usar óculos, sabendo que o sorteado foi um homem.

B → O sorteado é um homem.

A → O sorteado usa óculos.

P(A|B) = P(O sorteado usa óculos | O sorteado é um homem)

Agora que conhecemos as situações que envolvem a probabilidade, veremos a fórmula utilizada para calcular a probabilidade condicional.

Fórmula para calcular a probabilidade condicional

Para calcular a probabilidade P(A|B), utilizamos a fórmula:

Fórmula para calcular a probabilidade condicional a partir do número de probabilidades.

Analisando a fórmula, é possível simplificá-la para calcular a probabilidade condicional:

Demonstração da fórmula de probabilidade condicional.

Como se calcula a probabilidade condicional?

Para calcular a probabilidade condicional, podemos utilizar qualquer uma das fórmulas supracitadas.

Exemplo:

Uma moeda comum foi lançada três vezes e o resultado foi anotado. Qual é a probabilidade de se obter exatamente duas caras sabendo que o primeiro resultado foi cara?

Primeiro identificamos o evento B, lembrando que ele é condicionante.

B → O primeiro lançamento é cara.

B = {(cara, coroa, coroa); (cara, cara coroa); (cara, coroa cara); (cara, cara, cara)}

n(B) = 4

Agora identificaremos o evento A∩B:

A → O resultado possui exatamente duas caras.

A∩B → O resultado possui exatamente duas caras, e o primeiro resultado é cara.

{(cara, cara coroa); (cara, coroa cara)}

n(A∩B) = 2

Então, P(A|B) pode ser calculado por:

Cálculo da probabilidade condicional utilizando a fórmula.

Exercícios resolvidos sobre probabilidade condicional

Questão 1 - (Enem) O diretor de um colégio leu numa revista que os pés das mulheres estavam aumentando. Há alguns anos, a média do tamanho dos calçados das mulheres era de 35,5, e, hoje, é de 37,0. Embora não fosse uma informação científica, ele ficou curioso e fez uma pesquisa com as funcionárias do seu colégio, obtendo o quadro a seguir:

Tabela de enunciado de questão apresentando o tamanho de calçados de funcionárias de uma empresa.

Escolhendo uma funcionária ao acaso e sabendo que ela tem calçado maior que 36,0, a probabilidade de ela calçar 38,0 é:

A) 1/3

B) 1/5

C) 2/5

D) 5/7

E) 5/14

Resolução

Alternativa E

Note que esse problema envolve uma probabilidade condicional. Queremos calcular a probabilidade de a funcionária escolhida calçar 38,0 dado que ela calça mais que 36.

B → Calçar mais que 36

A → Calçar 38

A∩B → A intersecção é o conjunto formado pelas pessoas que calçam mais que 36 e que calçam 38, logo, ele é formado exclusivamente pelas 10 funcionárias que calçam 38.

n(B) = 3 + 10 + 1 = 14

n(A∩B) = 10

Então, temos que:

Resolução de questão utilizando a fórmula da probabilidade condicional de uma funcionária calçar 38.

Questão 2 - Em uma sala de aula, o professor construiu a tabela a seguir com as características dos seus alunos:

 

Usam óculos

Não usam óculos

Homens

3

10

Mulheres

4

15

Se um estudante for sorteado ao acaso, qual é a probabilidade de ele ser um homem sabendo que esse estudante não usa óculos?

A) 4%
B) 10%
C) 15%
D) 40%
E) 60%

Resolução

Alternativa D

Os eventos são:

B → O sorteado usa óculos.

A → O sorteado é um homem.

A∩B → O sorteado usa óculos e é um homem.

Sabemos que o sorteado usa óculos, então: n(B) = 10 + 15 = 25.

Também temos que n(A∩B) = 10

Dessa forma, podemos calcular a probabilidade condicional:

Resolução de questão para descobrir a probabilidade condicional de ser sorteado um aluno que usa óculos.

Sabemos que 0,4 = 40%.

 

Por Raul Rodrigues de Oliveira
Professor de Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Probabilidade condicional"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/probabilidade-condicional.htm. Acesso em 30 de julho de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Ao lançarmos dois dados não viciados, qual a probabilidade de obtermos faces voltadas para cima onde a soma entre elas seja 6?

Questão 2

No lançamento de uma moeda e um dado, determine a probabilidade de obtermos o resultado dado por (coroa, 1). 

Mais Questões
Artigos Relacionados
Probabilidade, Probabilidade condicional, o que é probabilidade condicional, evento, espaço amostral, evento vazio, complementar de um evento, representação do evento, Representação de espaço amostral, número de elementos de um espaço amostral, número de
Ponto Amostral, Espaço Amostral, Ocorrência de um evento, O que é evento, Evento Impossível, Evento vazio, Evento certo, Evento Complementar, Simbologia dos termos da probabilidade.
Determinando a probabilidade de um casal ter filhos do sexo feminino ou masculino.
Clique e veja quais são os três erros mais cometidos no cálculo de probabilidade e conheça algumas dicas para evitá-los.
Conheça o princípio fundamental da contagem e aprenda a calcular o número de combinações possíveis. Veja ainda exercícios resolvidos sobre o tema!
União de eventos, Verificação da fórmula da probabilidade da união de dois eventos, múltiplos de 2 e 3, União e interseção de elementos de conjuntos distintos.
Situações envolvendo condições de restrição da probabilidade de um evento.