Whatsapp icon Whatsapp
Copy icon

Equação do primeiro grau com uma incógnita

Matemática

PUBLICIDADE

A equação do primeiro grau com uma incógnita é uma ferramenta que resolve grandes problemas na matemática e até mesmo no nosso cotidiano. Essas equações são provenientes de polinômios de grau 1, e sua solução é um valor que zera tal polinômio, ou seja, encontrado o valor da incógnita e substituindo-o na expressão, vamos encontrar uma identidade matemática que consiste em uma igualdade verdadeira, por exemplo, 4 = 22.

O que é uma equação do 1º grau?

Uma equação do primeiro grau é uma expressão em que o grau da incógnita é 1, isto é, o expoente da incógnita é igual a 1. Podemos representar uma equação do primeiro grau, de maneira geral, da seguinte forma:

ax + b = 0

No caso acima, x é a incógnita, ou seja, o valor que devemos encontrar, e a e b são chamados de coeficientes da equação. O valor do coeficiente a deve ser sempre diferente de 0.

Leia também: Problemas matemáticos com equações

  • Exemplos de equações do 1º grau

Veja aqui alguns exemplos de equações do primeiro grau com uma incógnita:

a) 3x +3 = 0

b) 3x = x(7+3x)

c) 3 (x –1) = 8x +4

d) 0,5x + 9 = √81

Note que, em todos os exemplos, a potência da incógnita x é igual a 1 (quando não há número na base de uma potência, quer dizer que o expoente é um, ou seja, x = x1).

Não pare agora... Tem mais depois da publicidade ;)

Solução de uma equação do 1º grau

Representação geral de uma equação do primeiro grau.
Representação geral de uma equação do primeiro grau.

Em uma equação, temos uma igualdade, a qual separa a equação em dois membros. Do lado esquerdo da igualdade, vamos ter o primeiro membro, e do lado direito, o segundo membro.

ax + b = 0

(1º membro) = (2º membro)

Para manter a igualdade sempre verdadeira, devemos operar tanto no primeiro membro como no segundo, ou seja, se realizarmos uma operação no primeiro membro, devemos realizar a mesma operação no segundo membro. Essa ideia recebe o nome de princípio da equivalência.

15 = 15

15 + 3 = 15 + 3

18 = 18

18 – 30 = 18 – 30

– 12 = – 12

Veja que a igualdade permanece verdadeira desde que operemos de maneira simultânea nos dois membros da equação.

O princípio da equivalência é utilizado para determinar o valor da incógnita da equação, ou seja, determinar a raiz ou solução da equação. Para encontrar o valor de x, devemos utilizar o princípio da equivalência para isolar o valor da incógnita.

Veja um exemplo:

2x – 8 = 3x – 10

O primeiro passo é fazer com que o número – 8 desapareça do primeiro membro. Para isso, vamos somar o número 8 em ambos os lados da equação.

2x – 8 + 8 = 3x – 10 + 8

2x = 3x – 2

O próximo passo é fazer com que 3x desapareça do segundo membro. Para isso, vamos subtrair 3x em ambos os lados.

2x – 3x = 3x – 2 3x

– x = – 2

Como estamos à procura de x, e não de – x, vamos agora multiplicar ambos os lados por (– 1).

(– 1)· (– x) = (– 2) · (– 1)

x = 2

O conjunto solução da equação é, portanto, S = {2}.

Leia também: Diferenças entre função e equação

  • Macete para a solução de equação do primeiro grau

Existe um macete decorrente do princípio da equivalência que facilita encontrar a solução de uma equação. De acordo com essa técnica, devemos deixar tudo que depende da incógnita no primeiro membro e tudo que não depende da incógnita no segundo membro. Para isso, basta “passar” o número para o outro lado da igualdade, trocando seu sinal pelo sinal oposto. Se um número é positivo, por exemplo, quando passado para o outro membro, ele se tornará negativo. Caso o número esteja multiplicando, basta “passá-lo” dividindo e assim sucessivamente.

Veja:

2x – 8 = 3x – 10

Nessa equação, temos que “passar” o –8 para o segundo membro e o 3x para o primeiro, trocando seus sinais. Assim:

2x – 3x = –10 + 8

(–1)· – x = –2 ·(– 1)

x = 2

S = {2}.

  • Exemplo

Determine o conjunto solução da equação 4 (6x – 4) = 5 (4x – 1).

Resolução:

O primeiro passo é realizar a distributividade, logo:

24x – 16 = 20x – 5

Agora, organizando a equação com os valores que acompanham a incógnita de um lado e os demais no outro, vamos ter:

24x – 20x = –5 + 16

4x = 11

Leia também: Equação fracionária – como resolver?

Exercícios resolvidos

Questão 1 – O dobro de um número adicionado com 5 é igual a 155. Determine esse número.

Solução:

Como desconhecemos o número, vamos chamá-lo de n. Sabemos que o dobro de qualquer número é duas vezes ele mesmo, logo o dobro de n é 2n.

2n + 5 = 155

2n = 155 – 5

2n = 150

Resposta: 75.

Questão 2 – Roberta é quatro anos mais velha que Bárbara. A soma das idades das duas é 44. Determine a idade de Roberta e Bárbara.

Solução:

Como não sabemos a idade de Roberta e Bárbara, vamos nomeá-las como r e b respectivamente. Como Roberta é quatro anos mais velha que Bárbara, temos que:

r = b + 4

Sabemos também que a soma das idades das duas é de 44 anos, logo:

r + b = 44

Substituindo o valor de r na equação acima, temos:

r + b = 44

b + 4 + b = 44

b + b = 44 – 4

2b = 40

Resposta: Bárbara tem 20 anos. Como Roberta é 4 anos mais velha, então ela tem 24 anos.


 

Por Robson Luiz
Professor de Matemática 

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

LUIZ, Robson. "Equação do primeiro grau com uma incógnita"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/equacao-1-o-grau-com-uma-incognita.htm. Acesso em 23 de junho de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Determine o valor de x na equação a seguir aplicando as técnicas resolutivas.

a) 3 – 2 * (x + 3) = x – 18 

b) 50 + (3x − 4) = 2 * (3x – 4) + 26

Questão 2

Em um concurso os participantes devem responder a um total de 20 questões. Para cada resposta correta o candidato ganha 3 pontos e para cada resposta errada perde 2 pontos. Determine o número de acertos e erros que um candidato obteve considerando que ele totalizou 35 pontos. 

Mais Questões
Artigos Relacionados
Aprenda a calcular o consumo médio de combustível de um automóvel e as variações desse cálculo por meio de exemplos resolvidos.
Clique e conheça as principais diferenças entre função e equação e aprenda como esses dois conhecimentos relacionam-se na Matemática.
Resolução de equações fracionárias.
Formando pares ordenados a partir equações com duas variáveis.
Clique para aprender o que são equações exponenciais, um método de resolução e algumas de suas propriedades.
Por meio de alguns exemplos, entenda como podemos resolver a equação literal do primeiro grau com uma variável.
Aprenda a encontrar soluções de equações que envolvem logaritmos. Conheça as principais propriedades do logaritmo. Identifique equações logarítmicas.
Saiba o que é uma equação polinomial e aprenda a resolvê-la. Veja também o teorema fundamental da aritmética, e observe os exemplos com aplicações.
Equação de 1º grau, Equação, Equação equivalente, Igualdade, Igualdade matemática, Princípios da igualdade, Princípio aditivo da igualdade, Princípio multiplicativo da igualdade.
Problemas matemáticos, Como resolver problemas, Equação, Resolução de equação, Problemas envolvendo equação, Identificação da incógnita, Passos para resolução de uma equação problema.