Sistema de equações

Matemática

PUBLICIDADE

Consideramos um sistema de equações quando vamos resolver problemas que envolvem quantidades numéricas e que, geralmente, recorremos ao uso de equações para representar tais situações. Na maioria dos problemas reais, devemos considerar mais de uma equação simultaneamente, o que depende, dessa forma, da elaboração de sistemas.

Problemas, como a modelagem de tráfego, podem ser solucionados utilizando sistemas lineares, para isso, devemos entender os elementos de um sistema linear, quais métodos utilizar e como determinar sua solução.

Sistemas de equações são aqueles que trabalham com mais de uma quantidade numérica.
Sistemas de equações são aqueles que trabalham com mais de uma quantidade numérica.

Equações

Nosso estudo será em volta de sistemas de equações lineares, então, vamos entender primeiramente o que é uma equação linear.

Uma equação será dita linear quando puder ser escrita dessa forma:

a1 ·x1 + a2 ·x2 + a3 ·x3 +...+ an ·xn = k

Em que (a1, a2, a3, ..., an) são os coeficientes da equação, (x1, x2, x3, ..., xn) são as incógnitas e devem ser lineares e k é o termo independente.

Não pare agora... Tem mais depois da publicidade ;)

  • Exemplos

  • -2x + 1 = -8 ® Equação linear com uma incógnita
  • 5p + 2r =5 ® Equação linear com duas incógnitas
  • 9x – y - z = 0 ® Equação linear com três incógnitas
  • 8ab +c – d = -9 ® Equação não linear

Saiba mais: Diferenças entre função e equação

Como calcular um sistema de equações?

A solução de um sistema linear é todo conjunto ordenado e finito que satisfaz ao mesmo tempo todas as equações do sistema. A quantidade de elementos do conjunto solução sempre é igual ao número de incógnitas do sistema.

  • Exemplo

Considere o sistema:

https://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D%20%5Cfn_phv%20%5Clarge%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x%20+%20y%20%3D%204%5C%5C%20x%20-%20y%20%3D%208%20%5Cend%7Bmatrix%7D%5Cright.

O par ordenado (6; -2) satisfaz ambas equações, assim, ele é solução do sistema. O conjunto formado pelas soluções do sistema é chamado de conjunto solução. Do exemplo acima, temos:

S = {( 6; -2)}

A forma de escrever com chaves e parênteses indica um conjunto solução (sempre entre chaves) formado por um par ordenado (sempre entre parênteses).

Observação: Se dois ou mais sistemas possuem o mesmo conjunto solução, esses sistemas são chamados de sistemas equivalentes.

Método da substituição

O método da substituição resume-se em seguir três passos. Para isso, considere o sistema

https://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D%20%5Cfn_phv%20%5Clarge%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%203x%20+%202y%20%3D%20-5%5C%5C%20x%20-%202y%20%3D%20-7%20%5Cend%7Bmatrix%7D%5Cright.

  • Passo 1

O primeiro passo consiste em escolher uma das equações (a mais fácil) e isolar uma das incógnitas (a mais fácil). Assim,

x – 2y = -7

x = -7 + 2y

  • Passo 2

No segundo passo, basta substituir, na equação não escolhida, a incógnita isolada no primeiro passo. Logo,

 

3x + 2y = -7

3 (-7 + 2y) + 2y = - 5

-21 +6y + 2y =-5

8y = -5 +21

8y = 16

y = 2

  • Passo 3

O terceiro passo, consiste em substituir o valor encontrado no segundo passo em qualquer uma das equações. Assim,

x = -7 + 2y

x = -7 + 2(2)

x = -7 +4

x = -3

Portanto, a solução do sistema é S {(-3, 2)}.

Método da adição

Para realizar o método da adição, devemos lembrar que os coeficientes de uma das incógnitas devem ser opostos, ou seja, ter números iguais com sinais contrários. Vamos considerar o mesmo sistema do método da substituição.

https://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D%20%5Cfn_phv%20%5Clarge%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%203x%20+%202y%20%3D%20-5%5C%5C%20x%20-%202y%20%3D%20-7%20%5Cend%7Bmatrix%7D%5Cright.

Veja que os coeficientes da incógnita y atendem nossa condição, assim, basta somar cada uma das colunas do sistema, obtendo a equação:

4x + 0y = -12

4x = -12

x = -3

E substituindo o valor de x em qualquer uma das equações temos:

x - 2y = -7

-3 - 2y = -7

-2y = -7 + 3

(-1) (-2y) = -4 (-1)

2y = 4

y = 2

Portanto, a solução do sistema é S {(-3, 2)}

Leia também: Resolução de problemas por sistemas de equação

Classificação dos sistemas lineares

Podemos classificar um sistema linear quanto ao número de soluções. Um sistema linear pode ser classificado em possível e determinado, possível e indeterminado e impossível.

→ Sistema é possível e determinado (SPD): solução única

→ Sistema possível e indeterminado (SPI): mais de uma solução

→ Sistema impossível: não admite solução

Veja o esquema:

Exercício resolvido

Questão 1 – (Vunesp) Uma lapiseira, três cadernos e uma caneta custam, juntos, 33 reais. Duas lapiseiras, sete cadernos e duas canetas custam, juntos, 76 reais. O custo de uma lapiseira, um caderno e uma caneta, juntos, em reais é:

a) 11

b) 12

c) 13

d) 17

e) 38

Solução

Vamos atribuir a incógnita x ao preço de cada lapiseira, y ao preço de cada caderno e z ao preço de cada caneta. Do enunciado, temos que:

https://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D%20%5Cfn_phv%20%5Clarge%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x%20+%203y%20+%20z%20%3D%2033%5C%5C%202x%20+7y%20+2z%20%3D%2076%20%5Cend%7Bmatrix%7D%5Cright.

Multiplicando a equação de cima por -2 teremos que:

https://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D%20%5Cfn_phv%20%5Clarge%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20-2x%20-6y%20-2z%20%3D%20-66%5C%5C%202x%20+7y%20+2z%20%3D%2076%20%5Cend%7Bmatrix%7D%5Cright.

Somando termo a termo, teremos que:

y = 10

Substituindo o valor de y encontrado na primeira equação, teremos que:

x + 3y + z = 33

x + 30 + z  = 33

x + z = 3

Portanto, o preço de uma lapiseira de um caderno e uma caneta é:

x + y + z = 13 reais.

Alternativa C

 

Por Robson Luiz
Professor de Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

LUIZ, Robson. "Sistema de equações"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/sistema-duas-equacoes.htm. Acesso em 04 de dezembro de 2020.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

(UFMG)

Uma prova de múltipla escolha com 60 questões foi corrigida da seguinte forma: o aluno ganhava 5 pontos por questão que acertava e perdia 1 ponto por questão que errava ou deixava em branco. Se um aluno totalizou 210 pontos, qual o número de questões que ele acertou?

Questão 2

(Unirio – RJ)

Em um escritório de advocacia trabalham apenas dois advogados e uma secretária. Como o Dr. André e o Dr. Carlos sempre advogam em causas diferentes, a secretaria Cláudia coloca 1 grampo em cada processo do Dr. André e 2 grampos em cada processo do Dr. Carlos, para diferenciá-los facilmente no arquivo. Sabendo-se que , ao  todo, são 78 processos nos quais foram usados 110 grampos. Calcule o número de processos do Dr. Carlos. 

Mais Questões