Notificações
Você não tem notificações no momento.
Novo canal do Brasil Escola no
WhatsApp!
Siga agora!
Whatsapp icon Whatsapp
Copy icon

O que são cônicas?

Para entender o que são cônicas, devemos compreender que essas figuras geométricas planas são obtidas pela intersecção de um cone de revolução com um plano.

Representação de uma cônica.
Cônicas são figuras obtidas pela intersecção de um cone com um plano.
Imprimir
Texto:
A+
A-

PUBLICIDADE

Cônicas são figuras geométricas planas definidas a partir da intersecção de um cone duplo de revolução com um plano. As figuras que podem ser obtidas nessa intersecção, e que podem ser chamadas de cônicas, são: circunferência, elipse, parábola e hipérbole.

Definição de cônicas.

O cone duplo de revolução é conseguido com o giro de uma reta r sobre um eixo, que, por sua vez, é outra reta concorrente à reta r. A imagem a seguir mostra a reta que foi girada, o eixo e a figura obtida a partir dessa revolução.

Todas as definições das cônicas são baseadas na distância entre dois pontos, que pode ser encontrado no plano por meio do teorema de Pitágoras.

Tópicos deste artigo

Circunferência

Dado um ponto C e um comprimento fixo r, todo ponto que está a uma distância r do ponto C é um ponto da circunferência. O ponto C é chamado de centro da circunferência e r é seu raio. A seguinte imagem mostra um exemplo de circunferência e a forma que ela assume no plano cartesiano:

Dadas as coordenadas do ponto C (a, b), as coordenadas do ponto P (x, y) e o comprimento do segmento r, a equação reduzida da circunferência é:

(x – a)2 + (y – b)2 = r2

Elipse

Dados dois pontos F1 e F2 do plano, chamados de focos, a elipse é o conjunto dos pontos P, tais que a soma da distância de P a F1 com a distância de P a F2 é a constante 2a. A distância entre os pontos F1 e F2 é 2c e 2a > 2c.

Comparando as definições de elipse e circunferência, na elipse, somamos as distâncias que vão de um ponto da elipse até seus focos e observamos o resultado constante. Na circunferência, apenas uma distância é constante.

A imagem a seguir mostra um exemplo de elipse e a forma dessa figura no plano cartesiano:

Não pare agora... Tem mais depois da publicidade ;)

Nessa figura, pode-se observar os segmentos a, b e c, que serão usados para determinar as equações reduzidas da elipse.

Existem duas versões da equação reduzida da elipse; a primeira é válida para quando os focos estão sobre o eixo x de um plano cartesiano e o centro da elipse coincide com a origem:

 x2 y2 = 1
 a2     b2       

A segunda versão é válida para quando os focos estão sobre o eixo y e o centro da elipse coincide com a origem:

 y2 x2 = 1
 a2     b2       

Parábola

Dada uma reta r, chamada de diretriz, e um ponto F, chamado de foco, ambos pertencentes ao mesmo plano, uma parábola é o conjunto de pontos P, tais que a distância entre P e F seja igual à distância entre P e r.

A figura a seguir mostra um exemplo de parábola:

O parâmetro de uma parábola é a distância entre o foco e a diretriz, e essa medida é representada pela letra p. Também existem duas versões para a equação reduzida da parábola. A primeira é válida quando o foco está sobre o eixo x:

y2 = 2px

A segunda é válida quando o foco está sobre o eixo y:

x2 = 2py

Hipérbole

Dados dois pontos distintos F1 e F2, chamados de focos, de um plano qualquer, e a distância 2c entre esses pontos, um ponto P pertencerá à hipérbole se a diferença entre a distância de P até F1 e a distância de P a F2, em módulo, for igual a uma constante 2a. Assim:

|PF1 – PF2| = 2a

A imagem a seguir é uma hipérbole com os segmentos a, b e c.

A hipérbole também possui duas versões de equação reduzida. A primeira é referente aos casos em que os pontos F1 e F2 estão sobre o eixo x e o centro da hipérbole é a origem do plano cartesiano.

 x2 y2 = 1
 a2     b2       

O segundo caso é para quando os focos da hipérbole estão sobre o eixo y e seu centro coincide com a origem do plano cartesiano.

 y2 x2 = 1
 a2     b2       


Por Luiz Paulo Moreira
Professor de Matemática

Escritor do artigo
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "O que são cônicas?"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/o-que-e/matematica/o-que-sao-conicas.htm. Acesso em 03 de dezembro de 2024.

De estudante para estudante


Artigos Relacionados


O que é circunferência?

Clique para aprender o que é circunferência e ampliar seus conhecimentos em Matemática!
O que é Matemática?

O que é distância entre dois pontos?

Clique e aprenda o que é a distância entre dois pontos e conheça a demonstração de sua fórmula.
O que é Matemática?

O que é o teorema de Pitágoras?

Aprenda o que é o teorema de Pitágoras: um modo de calcular a medida de um dos lados de um triângulo retângulo.
O que é Matemática?

O que é parábola?

Descubra o que é parábola e quais seus principais elementos e aprenda uma forma de determinar suas equações com base na distância entre seus pontos.
O que é Matemática?

O que é plano cartesiano?

Conheça tudo sobre o plano cartesiano e seus elementos. Descubra como localizar e representar pontos no plano cartesiano.
O que é Matemática?

O que é reta?

Descubra o que é reta, de que maneira ela se relaciona com o conceito de ponto e algumas definições básicas que a envolvem!
O que é Matemática?

Área do cone

Clique aqui e descubra qual a planificação do cone e como calcular sua área a partir da área da base e da área lateral.
Matemática

Tronco de cone

Entenda o que é um tronco de cone e aprenda as fórmulas para calcular o volume e a área total desse sólido geométrico. Confira ainda sua planificação e exercícios!
Matemática

Cone

Aprenda o que é um cone, como calcular sua área total e volume, bem como conheça as suas principais classificações e identifique a planificação desse sólido.
Matemática

Exercícios sobre cone

Teste seus conhecimentos sobre o cone por meio desta lista de exercícios, que apresenta gabarito comentado para você retirar suas dúvidas.
Exercícios de Matemática