Whatsapp icon Whatsapp
Copy icon

Determinantes

Matemática

PUBLICIDADE

O determinante de uma matriz possui várias aplicações atualmente. Utilizamos o determinante para verificar se três pontos estão alinhados no plano cartesiano, para calcular áreas de triângulos, para resolução de sistemas lineares, entre outras aplicações na matemática. O estudo de determinantes não se limita à matemática, há algumas aplicações na física, como no estudo de campos elétricos.

Calculamos determinantes somente de matrizes quadradas, ou seja, matrizes em que a quantidade de colunas e a quantidade de linhas são iguais. Para calcular o determinante de uma matriz, precisamos analisar a ordem dela, ou seja, se ela é 1x1, 2x2, 3x3 e assim sucessivamente, quanto maior a sua ordem, mais difícil será encontrar o determinante. No entanto, há métodos importantes realizar-se o exercício, como a regra de Sarrus, utilizada para calcular-se determinantes de matrizes 3x3.

Leia também: Processo para resolução de um sistema linear m x n

Cálculo do determinante de uma matriz de ordem 2.
Cálculo do determinante de uma matriz de ordem 2.

Determinante de matriz de ordem 1

Uma matriz é conhecida como de ordem 1 quando possui exatamente uma linha e uma coluna. Quando isso ocorre, a matriz possui um único elemento, o a11. Nesse caso o determinante da matriz coincide com esse seu único termo.

A = (a11)

det(A) = | a11 | = a11

Exemplo:

A = [2]

det(A) = |2| = 2

Para calcular-se determinantes de matrizes de ordem 1, é necessário então apenas conhecer o seu único elemento.

Não pare agora... Tem mais depois da publicidade ;)

Determinantes de matrizes de ordem 2

A matriz quadrada 2x2, conhecida também como matriz de ordem 2, possui quatro elementos, nesse caso, para calcular o determinante, é necessário conhecermos o que é a diagonal principal e a diagonal secundária.

Para calcular o determinante de uma matriz de ordem 2, calculamos a diferença entre o produto dos termos da diagonal principal e os termos da diagonal secundária. Utilizando o exemplo algébrico que construímos, o det(A) será:

Exemplo:

Determinante de matriz de ordem 3

A matriz de ordem três é mais trabalhosa para obter-se o determinante do que as anteriores, na verdade, quanto maior a ordem de uma matriz, mais difícil será esse trabalho. Nela é necessário utilizar o que conhecemos como regra de Sarrus.

  • Regra de Sarrus

A regra de Sarrus é um método para calcular-se determinantes de matrizes de ordem 3. É necessário seguir alguns passos, sendo o primeiro duplicar as duas primeiras colunas no final da matriz, conforme o exemplo a seguir.

Agora vamos multiplicar os termos de cada uma das três diagonais que estão no mesmo sentido da diagonal principal.

Realizaremos um processo parecido com a diagonal secundária e as outras duas diagonais que estão no mesmo sentido que ela.

Note que os termos da diagonal secundária estão sempre acompanhados com o sinal negativo, ou seja, sempre trocaremos o sinal do resultado da multiplicação dos termos da diagonal secundária.

Exemplo:

Veja também: Teorema de Binet – processo prático para a multiplicação de matrizes

Propriedades do determinante

  • 1ª propriedade

Caso uma das linhas da matriz seja igual a 0, então o seu determinante será igual a 0.

Exemplo:

  • 2ª propriedade

Seja A e B duas matrizes, det(A·B) = det(A) · det(B).

Exemplo:

Calculando os determinantes separados, temos que:

det(A) = 2 · (-6) – 5 · 3
det(A) = -12 – 15 = -27

det(B) = 4 · 1 – 2 · (-2)
det(B) = 4 + 4 = +8

Então det(A) · det(B) = -27 · 8 =  -216

Agora vamos calcular det(A·B)

  • 3ª propriedade

Seja A uma matriz e A’ uma nova matriz construída trocando-se as linhas da matriz A, então det(A’) =  -det(A), ou seja, ao inverter-se a posição das linhas de uma matriz, o seu determinante terá o mesmo valor, porém de sinal trocado.

Exemplo:

  • 4ª propriedade

Linhas iguais ou proporcionais fazem com que o determinante da matriz seja igual a 0.

Exemplo:

Note que, na matriz A, os termos da linha dois são o dobro dos termos da linha um.

Acesse também: Aplicação das matrizes nos vestibulares

Exercícios resolvidos

Questão 1 - (Vunesp) Considerando as matrizes A e B, determine o valor de det(A·B):

a) -1

b) 6

c) 10

d) 12

e) 14

Resolução

Alternativa E

Sabemos que det(A·B) = det(A) · det(B):

det(A) = 1· 4 – 2 · 3 = 4 – 6 = -2
det(B) = -1 · 1 – 3 · 2 = -1 – 6 = -7

Então temos que:
det(A·B) = det(A) · det(B)
det(A·B) = -2 (-7) = 14

Questão 2 - Dada a matriz A, qual deve ser o valor de x para que det(A) seja igual a 0?

a) 1/2

b) 1/3

c) 1/9

d) 3
e) 9

Resolução

Alternativa B

Calculando o determinante de A, temos que:

 

Por Raul Rodrigues de Oliveira
Professor de Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Determinantes"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/determinantes-1.htm. Acesso em 27 de setembro de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Unicap - PE

Calcule o valor de x, a fim de que o determinante da matriz A seja nulo.

Questão 2

U.F. Ouro Preto – MG

Considere a matriz:

Mais Questões
Artigos Relacionados
Compreender a aplicação das matrizes é um fato importante para não ficar para trás no vestibular. A aplicação das matrizes nos vestibulares é realizada relacionando diversos dos conceitos de matrizes em apenas uma questão.
Calculando o determinante de matrizes de ordem maior que 3, por meio da regra de Chió. Conheça esta regra e os procedimentos que facilitam o cálculo de determinantes.
Entenda aqui as definições e formalizações da estrutura das matrizes. Veja também como operar seus elementos e os diferentes tipos de matrizes.
Entenda o que é uma matriz transposta. Conheça as propriedades de uma matriz transposta. Aprenda a encontrar a matriz transposta de uma determinada matriz.
Aprenda a calcular a multiplicação entre duas matrizes, bem como conheça o que é a matriz identidade e o que é a matriz inversa.
Conheças as propriedades envolvendo determinantes.
Você conhece a Regra de Sarrus? Aprenda a utilizar esse método para encontrar o determinante de matrizes 3x3.
Aprenda o que são sistemas lineares, conheça os principais métodos de resolução de sistema linear, e aprenda a classificar um sistema linear.
Matriz, Tipo de matrizes, Ordem das matrizes, Matriz linha, matriz coluna, Matriz nula, Matriz quadrada, Matriz diagonal, Matriz identidade, Matriz oposta, Matriz, Matriz iguais, Igualdade de matrizes.