Topo
pesquisar

Propriedades das potências

Matemática

As potências são operações matemáticas cujas propriedades podem facilitar a realização de cálculos e a simplificação de expressões.
As propriedades das potências podem ser usadas para ajudar no cálculo e na simplificação de expressões.
As propriedades das potências podem ser usadas para ajudar no cálculo e na simplificação de expressões.
PUBLICIDADE

As quatro operações matemáticas básicas são adição, subtração, multiplicação e divisão, entretanto, não são as únicas operações existentes. Quando o produto envolve fatores que são todos iguais, é possível definir uma nova operação matemática: a potenciação. Como tudo na Matemática, com uma nova definição, é possível também encontrar novas propriedades exclusivas a ela.

Vale relembrar, de forma rápida, a definição de potenciação antes de prosseguir com a explicação de suas propriedades.

Definição de potenciação

A potenciação é a operação matemática baseada em um produto, na qual todos os fatores são o mesmo número real. Exemplo:

7·7·7·7

O número real que se repete é chamado de base da potência, e a quantidade de vezes que ele repete-se é denominada expoente da potência. É possível reescrever uma potência com notação própria, colocando o expoente à direita da base, como um índice superior. Veja o exemplo anterior escrito na notação de potência:

7·7·7·7 = 74

De forma geral, as potências são definidas como:

an = a·a·a·...·a, em que a repete-se n vezes.

Propriedades da potenciação

A potenciação possui oito propriedades mais importantes, com as quais é possível resolver quase todos os problemas envolvendo essa operação:

1 – Expoente zero

Sempre que o expoente de uma potência for zero, independentemente do valor de sua base, o resultado dessa potência será igual a 1. Em outras palavras, sendo a pertencente ao conjunto dos números reais, com a ≠ 0:

a0 = 1

2 – Expoente unitário

Sempre que o expoente de uma potência for 1, independentemente do valor de sua base, o resultado dessa potência sempre será igual ao valor da base. Em outras palavras, sendo a pertencente ao conjunto dos números reais, com a ≠ 0:

a1 = a

3 – Produto de potências de mesma base

O resultado de um produto entre duas potências de bases iguais será uma terceira potência, na qual a base será igual às bases das potências que foram multiplicadas, e o expoente será igual à soma dos expoentes dessas potências.

Matematicamente, se a for pertencente ao conjunto dos números reais, e m e n pertencentes ao conjunto dos números naturais, com a ≠ 0, teremos:

Não pare agora... Tem mais depois da publicidade ;)

an∙am = an + m

Para verificar isso, observe o exemplo:

a4·a2 = a·a·a·a·a·a = a6 = a4 + 2

4 – Divisão de potências de mesma base

Na divisão de potências de mesma base, mantemos a base no resultado, e seu expoente será a diferença entre os expoentes das potências que estão sendo divididas.

Assim, traduzindo matematicamente, se a for pertencente ao conjunto dos números reais, m e n pertencentes ao conjunto dos números naturais, com a ≠ 0, teremos:

an:am = an – m

Para verificar isso, observe o exemplo:

a9:a7 = a9 – 7 = a2

Isso acontece porque:

a7:a9 = a7 = aaaaaaaaa = aa = a2
a9     aaaaaaa      

5 – Potência de potência

Isso ocorre quando a base de uma potência é outra potência. Nesse caso, multiplicamos os expoentes e conservamos a base.

Assim, se a for pertencente ao conjunto dos números reais e diferente de zero, m e n pertencentes ao conjunto dos números naturais, teremos:

(an)m = an·m

6 – Potência cuja base é uma divisão ou um produto

Nesse caso, cada um dos fatores deverá ser elevado separadamente ao expoente da potência. Dessa forma, se a e b forem pertencentes ao conjunto dos números reais e diferentes de zero, e m pertencente ao conjunto dos números naturais, teremos:

(a·b)n = an·bn

Se a base for uma divisão, teremos:

(a:b)n = an:bn

Esse último caso também pode ser expresso na forma de fração.

7 – Expoentes negativos

Quando um expoente é negativo, seu sinal poderá ser invertido desde que, para isso, a base da potência também seja invertida.

Assim, caso a pertença aos números reais, e n seja pertencente aos números naturais e diferente de zero, teremos:

8 – Potências com expoente racional

Caso uma potência apresente base a e expoente m/n, ela poderá ser reescrita como a raiz enésima de a elevado a m. Assim, matematicamente, teremos:


Por Luiz Paulo Moreira
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "Propriedades das potências"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/propriedades-das-potencias.htm. Acesso em 23 de julho de 2019.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Qual é o valor numérico da expressão:

35– 1·40– 1·102·5·100
23·14– 1·5·25

a) 1
    3

b) 1
    5

c) 1
    2

d) 1
    7

e) 
    25

Questão 2

Dada a expressão a seguir, qual é sua forma mais simplificada?

    24·35·46·57   
16·27·32·46·56

a) 5

b) 6

c) 4

d) 7

e) 9

Mais Questões
  • SIGA O BRASIL ESCOLA
Brasil Escola