Whatsapp icon Whatsapp
Copy icon

Passo a passo para construção do gráfico da função do segundo grau

Matemática

O gráfico de uma função do segundo grau é uma parábola.
O gráfico de uma função do segundo grau é uma parábola.
PUBLICIDADE

No Ensino Fundamental, funções são fórmulas matemáticas que associam cada número de um conjunto numérico (o domínio) a um único número pertencente a outro conjunto (o contradomínio). Quando essa fórmula é uma equação do segundo grau, temos uma função do segundo grau.

As funções podem ser representadas por figuras geométricas cujas definições coincidem com suas fórmulas matemáticas. É o caso da reta, que representa funções do primeiro grau, e da parábola, que representa funções do segundo grau. Essas figuras geométricas são chamadas de gráficos.

A ideia central da representação de função por um gráfico

Para desenhar o gráfico de uma função, é preciso avaliar qual elemento do contradomínio está relacionado com cada elemento do domínio e marcá-los, um a um, em um plano cartesiano. Quando todos esses pontos forem marcados, o resultado será justamente o gráfico de uma função.

Vale ressaltar que as funções do segundo grau, geralmente, são definidas em um domínio igual a todo o conjunto dos números reais. Esse conjunto é infinito e, por isso, é impossível marcar todos os seus pontos em um plano cartesiano. Desse modo, a alternativa é esboçar um gráfico que possa representar em parte a função avaliada.

Antes de qualquer coisa, lembre-se de que as funções do segundo grau possuem a seguinte forma:

y = ax2 + bx + c

Diante disso, apresentamos cinco passos que tornam possível a construção de um gráfico de função do segundo grau, exatamente como os que são exigidos no Ensino Médio.

Passo 1 – Avaliação geral da função

Existem alguns indicadores que ajudam a descobrir se o caminho certo está sendo tomado ao construir o gráfico de funções do segundo grau.

I - O coeficiente “a” de uma função do segundo grau indica sua concavidade, ou seja, se a > 0, a parábola será para cima e possuirá ponto de mínimo. Se a < 0, a parábola será para baixo e possuirá ponto de máximo.

II) O primeiro ponto A do gráfico de uma parábola pode ser facilmente obtido apenas observando o valor do coeficiente “c”. Desse modo, A = (0, c). Isso ocorre quando x = 0. Observe:

y = ax2 + bx + c

y = a·02 + b·0 + c

y = c

Passo 2 – Encontrar as coordenadas do vértice

O vértice de uma parábola é o seu ponto de máximo (se a < 0) ou de mínimo (se a > 0). Ele pode ser encontrado pela substituição dos valores dos coeficientes “a”, “b” e “c” nas fórmulas:

xv = – b
       2a

yv = –
        4a

 

Desse modo, o vértice V é dado pelos valores numéricos de xv e yv e pode ser escrito assim: V = (xv,yv).

Passo 3 – Pontos aleatórios do gráfico

É sempre bom indicar alguns pontos aleatórios cujos valores atribuídos à variável x sejam maiores e menores que xv. Isso lhe dará pontos antes e depois do vértice e tornarão o desenho do gráfico mais fácil.

Passo 4 – Se possível, determine as raízes

Quando existem, as raízes podem (e devem) ser incluídas no desenho do gráfico de uma função do segundo grau. Para encontrá-las, faça y = 0 para obter uma equação do segundo grau que possa ser resolvida pela fórmula de Bhaskara. Lembre-se de que resolver uma equação do segundo grau é o mesmo que encontrar suas raízes.

Não pare agora... Tem mais depois da publicidade ;)

A fórmula de Bhaskara depende da fórmula do discriminante. São elas:

x = – b ± √∆
     2a

∆ = b2 – 4ac

Passo 5 – Marcar todos os pontos obtidos no plano cartesiano e ligá-los, de modo a construir uma parábola

Lembre-se de que o plano cartesiano é formado por duas retas numéricas perpendiculares. Isso significa que, além de conter todos os números reais, essas retas formam um ângulo de 90°.

Exemplo de plano cartesiano e exemplo de parábola.

Exemplo de plano cartesiano e exemplo de parábola.

Exemplo

Construa o gráfico da função do segundo grau y = 2x2 – 6x.

Solução: Observe que os coeficientes dessa parábola são a = 2, b = – 6 e c = 0. Dessa maneira, pelo passo 1, podemos afirmar que:

1 – A parábola ficará para cima, pois 2 = a > 0.

2 – Um dos pontos dessa parábola, representado pela letra A, é dado pelo coeficiente c. Logo, A = (0,0).

Pelo passo 2, observamos que o vértice dessa parábola é:

xv = – b
      2a

xv = – (– 6)
     2·2

xv = 6
      4

xv = 1,5

 

yv = –
        4a

yv = – (b2 – 4·a·c)
      4·a

yv = – ((– 6)2 – 4·2·0)
     4·2

yv = – (36)
         8

yv = – 36
         8

yv = – 4,5

 

Logo, as coordenadas do vértice são: V = (1,5, – 4,5)

 

Utilizando o passo 3, escolheremos apenas dois valores para a variável x, um maior e outro menor que xv.

 

Se x = 1,

 

y = 2x2 – 6x

y = 2·12 – 6·1

y = 2·1 – 6

y = 2 – 6

y = – 4

 

Se x = 2,

 

y = 2x2 – 6x

y = 2·22 – 6·2

y = 2·4 – 12

y = 8 – 12

y = – 4

 

Logo, os dois pontos obtidos são B = (1, – 4) e C = (2, – 4)

 

Pelo passo 4, que não precisa ser feito caso a função não possua raízes, obtemos os seguintes resultados:

∆ = b2 – 4ac

∆ = (– 6)2 – 4·2·0

∆ = (– 6)2

∆ = 36

 

x = – b ± √∆
     2a

x = – (– 6) ± √36
  2·2

x = 6 ± 6
     4

x' = 12
      4

x' = 3

 

x'' = 6 – 6
     4

x'' = 0

 

Logo, os pontos obtidos por meio das raízes, tendo em vista que, para obter x = 0 e x = 3, foi preciso fazer y = 0, são: A = (0, 0) e D = (3, 0).

 

Com isso, obtemos seis pontos para desenhar o gráfico da função y = 2x2 – 6x. Agora basta cumprir o passo 5 para construí-lo definitivamente.

 

Gráfico: função do segundo grau do exemplo

 

 

Por Luiz Paulo Moreira
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "Passo a passo para construção do gráfico da função do segundo grau"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/passo-passo-para-construcao-grafico-funcao-segundo-grau.htm. Acesso em 19 de outubro de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

O gráfico a seguir pertence a uma função f(x) do segundo grau, com domínio e contradomínio no conjunto dos números reais. A respeito dessas funções, assinale a alternativa correta:

a) Toda função do segundo grau pode ser escrita na forma ax2 + bx + c = 0.

b) O coeficiente “a” dessa função é positivo.

c) O valor do coeficiente “c”, nessa função, é igual a 9.

d) Não é possível determinar as raízes dessa função unicamente a partir de seu gráfico. Para isso, a lei de formação sempre será necessária.

e) f(2) = 0 e f(-2) = 0

Questão 2

A função f(x) = 2x2 + 4x – 6 está definida nos números reais. A respeito do gráfico dessa função, assinale a alternativa que for correta:

a) O vértice dessa função possui as coordenadas (1, – 8).

b) Uma das raízes dessa função possui as coordenadas (1, 0).

c) A concavidade dessa função está voltada para baixo. Isso acontece porque o valor do coeficiente a é negativo.

d) O coeficiente “c” dessa função é exatamente – 8, pois c é referente ao ponto mais baixo de uma função com concavidade voltada para cima.

e) O coeficiente “c” dessa função é exatamente 8, pois c é referente ao ponto mais alto de uma função com concavidade voltada para baixo.

Mais Questões
Artigos Relacionados
Função do segundo grau, Função, Gráfico de função, parábola, concavidade, parábola para baixo, concavidade para cima, Construção de gráfico, coeficiente a positivo, Coeficiente a negativo.
Clique e aprenda como calcular as coordenadas do vértice de uma parábola usando fórmulas que dependem apenas dos coeficientes da função do segundo grau. Obtenha ainda a demonstração dessas fórmulas, que é baseada em um segundo método que também pode ser usado para encontrar as coordenadas do vértice da parábola.
Clique e confira o que são os conjuntos domínio, contradomínio e imagem e entenda como se comportam seus elementos na função.
Clique e descubra como resolver uma Equação do 2º grau sem a fórmula de Báskara.
Entenda o que é uma função injetora e veja exemplos. Conheça também as propriedades e gráficos característicos dessa função.
Entenda o que é uma função inversa e aprenda a calculá-la. Confira ainda exercícios resolvidos para testar os conhecimentos adquiridos.
Clique e descubra o que são funções bijetoras e entenda como as funções injetoras e sobrejetoras podem defini-las.
Aprenda o que é e como utilizar a fórmula de Bhaskara para resolver equações do segundo grau!
Conheça o gráfico de uma função do 2º grau e aprenda a relacionar a direção da parábola com o coeficiente a.
Analisando os coeficientes da função quadrática canônica para determinar os valores de máximo e mínimo. Obtendo os valores de máximo e mínimo de uma função quadrática.