Whatsapp

Equação polinomial

Matemática

PUBLICIDADE

Uma equação polinomial é caracterizada por ter um polinômio igual a zero. Ela  pode ser caracterizada pelo grau do polinômio, e, quanto maior esse grau, maior será o grau de dificuldade para encontrar-se sua solução ou raiz.

É importante também, nesse contexto, compreender o que é o teorema fundamental da álgebra, que afirma que toda equação polinomial possui pelo menos uma solução complexa, em outras palavras: uma equação de grau um terá, pelo menos, uma solução, uma equação de grau dois, terá, pelo menos, duas soluções, e assim sucessivamente.

Leia também: Quais são as classes de polinômios?

O que é uma equação polinomial

Uma equação polinomial é caracterizada por ter um polinômio igualado a zero, assim, toda expressão do tipo P(x) = 0 é uma equação polinomial, em que P(x) é um polinômio. Veja, a seguir, o caso geral de uma equação polinomial e alguns exemplos.

Considere an, an –1, a n –2, …, a1, a0 e x números reais, e n um número inteiro positivo, a expressão seguinte é uma equação polinomial de grau n.

  • Exemplo

As equações seguintes são polinomiais.

a) 3x4 + 4x2 – 1 = 0

b) 5x2 – 3 = 0

c) 6x – 1 = 0

d) 7x3 – x2 + 4x + 3 = 0

Assim como os polinômios, as equações polinomiais possuem seu grau. Para determinar o grau de uma equação polinomial, basta encontrar a maior potência cujo coeficiente seja diferente de zero. Portanto, as equações dos itens anteriores são, respetivamente:

a) A equação é do quarto grau: 3x4 + 4x2 – 1 = 0.

b) A equação é do segundo grau: 5x2 – 3 = 0.

c) A equação é do primeiro grau: 6x – 1 = 0.

d) A equação é do terceiro grau: 7x3 – x2 + 4x + 3 = 0.

Não pare agora... Tem mais depois da publicidade ;)

Como resolver uma equação polinomial?

O método de resolução para uma equação polinomial depende do seu grau. Quanto maior o grau de uma equação, maior a dificuldade em resolvê-la. Neste artigo, mostraremos o método de resolução para equações polinomiais do primeiro grau, segundo grau e biquadradas.

  • Equação polinomial do primeiro grau

Uma equação polinomial do primeiro grau é descrita por um polinômio de grau 1. Assim podemos escrever uma equação do primeiro grau, de forma geral, da seguinte maneira.

Considere dois números reais a e b com a ≠ 0, a expressão a seguir é uma equação polinomial do primeiro grau:

ax + b = 0

Para resolver essa equação, devemos utilizar o princípio da equivalência, ou seja, tudo que é operado em um lado da igualdade dever também ser operado do outro lado. Para determinar a solução de uma equação do primeiro grau, devemos isolar a incógnita. Para isso, o primeiro passo é eliminar o b do lado esquerdo da igualdade, e, em seguida, subtrairemos b dos dois lados da igualdade.

ax + b – b = 0 – b

ax = – b

Veja que ainda o valor da incógnita x não está isolado, o coeficiente a precisa ser eliminado do lado esquerdo da igualdade, e, para isso, vamos dividir ambos os lados por a.

  • Exemplo

Resolva a equação 5x + 25 = 0.        

Para resolver o problema, devemos utilizar o princípio da equivalência. Tendo em vista facilitar o processo, omitiremos a escrita da operação do lado esquerdo da igualdade, sendo equivalente então dizer que vamos “passar” o número para o outro lado, trocando o sinal (operação inversa).

Saiba mais sobre a resolução desse tipo de equação acessando o nosso texto: Equação do primeiro grau com uma incógnita.

  • Equação polinomial do segundo grau

Uma equação polinomial do segundo grau tem como característica um polinômio de grau dois. Assim, considere a, b e c números reais com a ≠ 0. Uma equação do segundo grau é dada por:

ax2 + bx + c = 0

A sua solução pode ser determinada utilizando-se o método de Bhaskara ou por fatoração. Se quiser saber mais sobre as equações desse tipo, leia: Equação do segundo grau.

Método de Bhaskara

Utilizando o método de Bhaskara, temos que suas raízes são dadas pela seguinte fórmula:

  • Exemplo

Determine a solução da equação x2 – 3x + 2 = 0.

Observe que os coeficientes da equação são, respetivamente, a = 1, b = – 3 e c = 2. Substituindo esses valores na fórmula, temos que:

 Fatoração

Veja que é possível fatorar a expressão x2 – 3x + 2 = 0 utilizando a ideia de fatoração de polinômios.

x2 – 3x + 2 = 0

(x – 2) · (x – 1) = 0    

Observe agora que temos um produto igualado a zero, e um produto é igual a zero somente se um dos fatores é igual a zero, portanto, temos que:

x – 2 = 0

x = 2

ou

x – 1 = 0

x = 1

Veja que encontramos a solução da equação utilizando dois métodos diferentes.

  • Equação biquadrada

A equação biquadrada é um caso particular de uma equação polinomial do quarto grau, normalmente uma equação do quarto grau seria escrita na forma:

ax4 + bx3 + cx2 + dx + e = 0

Em que os números a, b, c, d e e são reais com a ≠ 0. Uma equação do quarto grau é considerada biquadrada quando os coeficientes b = d = 0, ou seja, a equação fica na forma:

ax4 + cx2 + e = 0       

Veja, no exemplo a seguir, como resolver essa equação.

  • Exemplo

Resolva a equação x4 – 10x2 + 9 = 0.

Para resolver a equação, vamos utilizar a seguinte mudança de incógnita, e sempre que a equação for biquadrada, faremos tal mudança.

x2 = p

Da equação biquadrada, observe que x4 = (x2)2  e, portanto, temos que:

x4 – 10x2 + 9 = 0

  (x2)2 – 10x2 + 9 = 0

p2 – 10p + 9 = 0

Veja que agora temos uma equação polinomial do segundo grau e podemos utilizar o método de Bhaskara, assim:

No entanto, devemos lembrar que, no início do exercício, foi feita uma mudança de incógnita, então, devemos aplicar o valor encontrado na substituição.

x2 = p

Para p = 9 temos que:

x2 = 9

x’ = 3

ou

x’’ = – 3

Para p = 1

x2 = 1

x’ = 1

ou

x’’ = – 1

Portanto, o conjunto solução da equação biquadrada é:

S = {3, –3, 1, –1}

Leia também: Dispositivo prático de Briot-Ruffini – divisão de polinômios

Teorema fundamental da álgebra (TFA)

O teorema fundamental da álgebra (TFA), provado por Gauss em 1799, afirma que toda equação polinomial da seguinte forma possui pelo menos uma raiz complexa.

A raiz de uma equação polinomial é sua solução, ou seja, o valor da incógnita é que torna a igualdade verdadeira. Por exemplo, uma equação do primeiro grau possui uma raiz já determinada, assim como a equação do segundo grau, que possui pelo menos duas raízes, e a biquadrada, que possui pelo menos quatro raízes.

A equação do segundo grau é um exemplo de equação polinomial.
A equação do segundo grau é um exemplo de equação polinomial.

Exercícios resolvidos

Questão 1 – Determine o valor de x que torne a igualdade verdadeira.

2x – 8 = 3x + 7

Resolução

Observe que, para resolver a equação, é necessário organizá-la, isto é, deixar todas as incógnitas no lado esquerdo da igualdade.

2x – 8 = 3x + 7

2x – 3x = 7 + 8

– x = 15

Pelo princípio da equivalência, podemos multiplicar ambos os lados da igualdade pelo mesmo número, e, como desejamos descobrir o valor de x,  multiplicaremos ambos os lados por –1.

(–1) – x = 15 (–1)

x = – 15

Questão 2 – Marcos possui R$ 20 a mais que João. Juntos, eles conseguem comprar dois pares de tênis, custando R$ 80 cada par e sem sobrar nenhum dinheiro. Quantos reais têm João?

Resolução

Considere que Marcos possui x reais, como João tem 20 reais a mais, então ele possui x + 20.

Marcos → x reais

João → (x + 20) reais

Como eles compraram dois pares de tênis que custam 80 reais cada, então, se juntarmos as partes de cada um, teremos que:

x + (x + 20) = 2 · 80

x + x = 160 – 20

2x = 140

Portanto, Marcos tinha 70 reais, e João, 90 reais.

 

Por Robson Luiz
Professor de Matemática 

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

LUIZ, Robson. "Equação polinomial"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/equacao-polinomial.htm. Acesso em 09 de março de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

Sabendo que 12 é raiz de p(x) = x² – mx + 6, determine o valor de m.

Questão 2

Dados os polinômios p(x) = (a – 1)x² – (a – b)x + (2a – b + c) e q(x) = 4x² – 5x + 1, determine a, b e c para que tenhamos p(x) = q(x).

Mais Questões
Artigos Relacionados
Você conhece o teorema da decomposição de um polinômio? Aprenda a decompor polinômios em n fatores de grau 1!
Você já ouviu falar do Teorema das Raízes Racionais? Aprenda a utilizá-lo para determinar as raízes de um polinômio de qualquer grau.
Já ouviu falar em classes de polinômios? Acesse e descubra quais são elas!
Entenda o que é uma expressão algébrica e aprenda a fatorá-la. Saiba também o que é um monômio e o que é um polinômio.
Aprenda a definição de equação polinomial, definir uma função polinomial, o valor numérico de um polinômio, a raiz ou zero do polinômio, Grau de um polinômio.
Aprenda o que é uma equação do primeiro grau com uma incógnita. Saiba como resolvê-la e determinar o valor de sua incógnita.
Entenda o que é uma equação do 2º grau. Aprenda como calcular suas raízes e a fórmula de Bhaskara. Saiba também como resolver um sistema de equações do 2º grau.
Equação, equação do segundo grau, Equação biquadrada, Forma geral da equação biquadrada, Raízes da equação biquadrada, Incógnita, Substituição de incógnitas.