Cálculo do Kps

Química

O cálculo do Kps é realizado a partir do produto (multiplicação) das molaridades dos cátions e ânions liberados por um eletrólito dissolvido.
PUBLICIDADE

O cálculo do Kps (produto de solubilidade) está relacionado com dois equilíbrios químicos que ocorrem quando um eletrólito (um sal, uma base ou um ácido) pouco solúvel forma com a água uma solução saturada com corpo de fundo. Os dois equilíbrios são:

  • Equilíbrio de dissolução

XaYb(aq) → XaYb(ppt)

Nesse equilíbrio, a velocidade em que o eletrólito dissolve-se na água é igual à velocidade em que ele se precipita. A constante de equilíbrio (Kc) é:

Kc =    1    
      XaYb(aq)

XaYb(aq) → aX+(aq) + bY-(aq)

Como o eletrólito dissolve-se na água, automaticamente ele se dissocia, liberando cátion e ânion. Nesse caso, a constante de equilíbrio (Kc) é:

Kc = [X+]a . [Y-]b
       [XaYb(aq)]

A molaridade do eletrólito na solução é sempre constante, por isso podemos incluí-la no Kc:

Kc. XaYb(aq) = X+a . Y-b

Ao incluir a molaridade do eletrólito no Kc, ele passa a ser denominado de Kps, e as molaridades (solubilidade ou coeficiente de solubilidade) dos íons são elevadas aos seus respectivos expoentes:

Kps = [X+a] . [Y-b]

Assim, como o Kps está relacionado com os íons liberados pelo eletrólito, para desenvolver o cálculo dessa constante, é importante saber que a molaridade do cátion e do ânion sempre obedece a uma relação em mols com a molaridade do eletrólito de origem, ou seja:

CaCl2 → Ca+2 + 2 Cl-1

Observando a equação de dissociação do eletrólito, temos que 1 mol do CaCl2 está para 1 mol do Ca+2 e 2 mols do Cl-1. Assim, se a concentração do CaCl2 for x, a do Ca+2 será x e a do Cl-1 será 2x.

♦ Exemplos de Cálculo do Kps

1) (UFRJ) Qual será a expressão do Kps do CaF2, utilizando x como molaridade do sal?

Resolução:

Inicialmente é necessário montar a equação de dissociação do sal:

CaCl2 → Ca+2 + 2 Cl-1

Na equação, temos que 1 mol do CaF2 libera 1 mol do CaF2 e 2 mols do F-1. Logo, se a molaridade do sal é x, a molaridade do Ca+2 será x e a molaridade do F-1 será 2x.

Com esses dados, podemos montar a expressão do Kps do sal:

Kps = [Ca+2]. [F-1]

Kps = x. (2x)2

Kps = x. 4x2

Kps = 4x3

2) (Mackenzie-SP) Determine o produto de solubilidade (Kps) do carbonato de cálcio (CaCO3) que apresenta solubilidade de 0,013g/L, a 20oC. Dados: Ca = 40; C = 12; O = 16.

Resolução:

Temos que transformar a concentração fornecida pelo exercício de g/L para mol/L, já que essa é a unidade de concentração utilizada nos cálculos do Kps. Para isso, calcula-se a massa molar do sal e, depois, divide-se a concentração dada pela massa molar:

Não pare agora... Tem mais depois da publicidade ;)

- Cálculo da massa molar:

MCaCO3 = 40 + 12 + 3.(16)

MCaCO3 = 40 + 12 + 48

MCaCO3 = 100g/mol

Conversão da concentração (C) de g/L para mol/L (M):

M =    C  
     MCaCO3

M = 0,013
        100

M = 1,3.10-4 mol/L

Tendo em mãos a molaridade do sal, é necessário conhecer a concentração de cada um de seus íons a partir da sua dissociação:

CaCO3 → Ca+2 + CO3-2

Como um mol de CaCO3 libera 1 mol de Ca+2 e 1 mol de CO3-2, a concentração de cada íon será igual à do sal, ou seja, 1,3.10-4. Por fim, basta calcular o Kps a partir da expressão montada pela equação de dissociação do sal:

Kps = [Ca+2] . [CO3-2]

Kps = 1,3.10-4. 1,3.10-4.

Kps = 1,69.10-8 (mol/L)2

3) (F.C. Chagas-BA) A solubilidade de um certo cloreto MCl2 em água é de 1,0. 10-3 mol/L. Qual será o valor do seu produto de solubilidade será:

Resolução:

O exercício já nos forneceu a molaridade do eletrólito, assim, basta realizar a sua dissociação para determinar a concentração molar de cada íon e o Kps.

MCl2 → M+2 + 2 Cl-1

Como 1 mol do MCl2 origina 1 mol do M+2 e 2 mols do Cl-1, a molaridade do M+2 será igual a 1,0.10-3, e a do Cl-1 será o dobro, ou seja, 2,0.10-3. Por fim, basta calcular o Kps a partir da expressão montada pela equação de dissociação do eletrólito:

Kps = [M+2] . [Cl-1]2

Kps = 1,0.10-3. (2,0.10-3)2.

Kps = 1,0.10-3. 4,0.10-6

Kps = 4.10-9 (mol/L)2

4) (OSEC-SP) O produto de solubilidade do brometo de prata é 5,2×10-13. Se a solução contém 2,0×10-2 mol de Br-, qual será a máxima concentração de íons Ag+(aq) necessária para não precipitar o brometo de prata (AgBr)?

Resolução:

Os dados fornecidos pelo exercício são:

Kps: 5,2.10-13

[Br-1] = 2.10-2

[Ag+1] = ?

Analisemos a dissociação do sal fornecido:

AgBr → Ag+1 + Br-1

Temos que 1mol do sal origina 1 mol do Ag+1 e 1 mol do Br-1. Assim, com a montagem da expressão do Kps a partir desses dados, podemos encontrar a concentração máxima de íons Ag+1:

Kps = [Ag+1].[Br-1]

5,2.10-13 = [Ag+1].2,0.10-2

[Ag+1] = 5,2.10-13
             2,0.10-2

[Ag+1] = 2,6.10-11 mol/L


Por Me. Diogo Lopes Dias

Estalactites e estalagmites formam-se nas grutas em decorrência da constante do produto de solubilidade
Estalactites e estalagmites formam-se nas grutas em decorrência da constante do produto de solubilidade

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

DIAS, Diogo Lopes. "Cálculo do Kps"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/quimica/calculo-kps.htm. Acesso em 29 de maio de 2020.

Lista de Exercícios
Questão 1

(UFU-MG) A solubilidade do sulfato de chumbo II (PbSO4) em água a 18oC é de 0,041 g/L. A constante do produto de solubilidade do sulfato de chumbo a 18oC é:

Dados: S = 32; O = 16; Pb = 207

a) 1,8×10-8

b) 2,4×10-5

c) 4,5×10-4

d) 5,5×10-7

e) 5,5×107

Questão 2

(UEPB) O produto de solubilidade (KPs) do hidróxido de ferro III, a 25ºC, é igual a 2,7 x 10-39. Sabendo que a massa molar do hidróxido de ferro III [Fe(OH)3] é igual a 107 g/mol, o valor da solubilidade, a 25ºC, em g/l, é:

a) 1,07 x 10-7 g/L

b) 10,7 x 10-8 g/L

c) 107 x 10-8 g/L

d) 0,10 x 10-8 g/L

e) 1,07 x 10-8 g/L

Mais Questões