Notificações
Você não tem notificações no momento.
Novo canal do Brasil Escola no
WhatsApp!
Siga agora!
Whatsapp icon Whatsapp
Copy icon

Soma dos ângulos internos e externos de um polígono convexo

A soma dos ângulos internos de um polígono convexo depende das diagonais que partem de um mesmo vértice. A soma dos externos é sempre 360°.

Ângulos internos e externos de um polígono convexo e regular
Ângulos internos e externos de um polígono convexo e regular
Crédito da Imagem: Shutterstock
Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Em um polígono, quanto maior é o número de lados, maior é a medida dos ângulos internos.

Considerando as diagonais traçadas por apenas um dos vértices de um polígono, é possível perceber que elas formam triângulos. Conforme aumentamos os lados de um polígono, a quantidade de triângulos também aumenta. Veja:

Em um quadrilátero, conseguimos formar dois triângulos.

Quadrilátero

Considerando que, em cada triângulo, a soma dos ângulos internos iguais é 180°, a soma dos ângulos internos de qualquer quadrilátero é 2·180º = 360º.

Em um polígono de cinco lados (pentágono), formamos três triângulos.

Pentágono

Dessa forma, temos que a soma dos ângulos internos de um pentágono é 180º·3 = 540º

Em um polígono de seis lados (hexágono), formamos quatro triângulos.

Hexágono

Portanto, a soma dos ângulos internos é 4·180º = 720º.

Soma dos ângulos internos de um polígono convexo

Percebemos que a diferença do número de triângulos formados e o número de lados dos polígonos é sempre 2, então, concluímos que:

Não pare agora... Tem mais depois da publicidade ;)
  • n = 3

Si = (3 – 2)·180º = 1·180° = 180°

  • n = 4

Si = (4 – 2)·180° = 2·180° = 360°

  • n = 5

Si = (5 – 2)·180° = 3·180° = 540°

  • n = 6

Si = (6 – 2)·180° = 4·180° = 720°

  • n = n

Si = (n – 2)·180°

Portanto, a soma dos ângulos internos de qualquer polígono é calculada pela expressão:

Si = (n – 2)·180°

Caso queira calcular o valor de cada ângulo interno, basta dividir a soma dos ângulos internos pelo número de lados do polígono. Vale lembrar que essa fórmula só deve ser utilizada em polígonos regulares, pois eles possuem os ângulos internos iguais.

ai = Si
     n

Soma dos ângulos externos de um polígono regular

A soma dos ângulos externos de qualquer polígono convexo é igual a 360°.

Obs.: A soma de um ângulo interno com o seu respectivo externo é igual a 180º, isto é, eles são suplementares.


Por Marcos Noé
Graduado em Matemática 

Escritor do artigo
Escrito por: Marcos Noé Pedro da Silva Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro da. "Soma dos ângulos internos e externos de um polígono convexo"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/soma-dos-angulos-internos-externos-um-poligono-convexo.htm. Acesso em 21 de novembro de 2024.

De estudante para estudante


Videoaulas