Whatsapp icon Whatsapp
Copy icon

Matriz inversa

Matemática

PUBLICIDADE

O conceito de matriz inversa se aproxima bastante do conceito de inverso de um número. Vamos lembrar que o inverso de um número n é o número n-1, em que o produto entre os dois é igual ao elemento neutro da multiplicação, ou seja, o número 1. Já a inversa da matriz M é a matriz M-1, em que o produto M · M-1 é igual à matriz identidade In, que nada mais é do que o elemento neutro da multiplicação de matrizes.

Para que a matriz possua inversa, ela precisa ser quadrada e, além disso, o seu determinante tem que ser diferente de zero, caso contrário não haverá inversa. Para encontrar a matriz inversa, utilizamos a equação matricial.

Leia também: Matriz triangular — tipo especial de matriz quadrada

Para que uma matriz possua uma inversa, ela precisa ser quadrada.
Para que uma matriz possua uma inversa, ela precisa ser quadrada.

Matriz identidade

Para compreender o que é a matriz inversa, é necessário antes conhecer a matriz identidade. Conhecemos como matriz identidade a matriz quadrada In em que todos os elementos da diagonal principal são iguais a 1 e os demais termos são iguais a 0.

A matriz identidade é o elemento neutro da multiplicação entre matrizes, ou seja, dada uma matriz M de ordem n, o produto entre a matriz M e a matriz In é igual à matriz M.

M · In = M

Não pare agora... Tem mais depois da publicidade ;)

Como calcular a matriz inversa

Para encontrar a matriz inversa de M, é necessário resolver uma equação matricial:

 M · M-1 = In

Exemplo

Encontre a matriz inversa de M.

Como não conhecemos a matriz inversa, vamos representar essa matriz de forma algébrica:

Sabemos que o produto entre essas matrizes tem que ser igual a I2:

Agora vamos resolver a equação matricial:

É possível separar o problema em dois sistemas de equações. O primeiro usa a primeira coluna da matriz M ·M-1 e a primeira coluna da matriz identidade. Assim, temos que:

Para resolver o sistema, vamos isolar a21 na equação II e substituir na equação I.

Substituindo na equação I, temos que:

Como encontramos o valor de a11, então encontraremos o valor de a21:

Conhecendo o valor de a21 e a11, agora encontraremos o valor dos demais termos montando o segundo sistema:

Isolando a22 na equação III, temos que:

3a12 + 1a22 = 0

a22 = – 3a12

Substituindo na equação IV:

5a12 + 2a22 =1

5a12  + 2·( – 3a12) = 1

5a12 – 6a12 = 1

– a12 = 1    ( – 1)

a12 = – 1

Sabendo o valor de a12, encontraremos o valor de a22 :

a22 = – 3a12

a22 = – 3 · ( – 1)

a22 = 3

Agora que conhecemos todos os termos da matriz M-1, é possível representá-la:

Leia também: Adição e subtração de matrizes

Propriedades da matriz inversa

Existem propriedades que resultam da definição de uma matriz inversa.

  • 1ª propriedade: a inversa da matriz M-1 é igual à matriz M. A inversa de uma matriz inversa é sempre a própria matriz, ou seja, (M-1)-1 = M, pois sabemos que M-1 · M = In, portanto M-1 é a inversa de M e também M é a inversa de M-1.
  • 2ª propriedade: a inversa de uma matriz identidade é ela mesma: I-1 = I, pois o produto da matriz identidade por ela mesma resulta na matriz identidade, ou seja,  In · In = In.
  • 3ª propriedade: a inversa do produto de duas matrizes é igual ao produto das inversas:

(M×A)-1 = M-1 · A-1.

  • 4ª propriedade: uma matriz quadrada possui inversa se, e somente se, o seu determinante é diferente de 0, ou seja, det(M) ≠ 0.

Exercícios resolvidos

1) Dadas a matriz A e a matriz B, sabendo que elas são inversas, então o valor de x+y é:

a) 2.

b) 1.

c) 0.

d) -1.

e) -2.

Resolução:

Alternativa d.

Montando a equação:

A · B = I 

Pela segunda coluna, igualando os termos, temos que:

3x + 5y = 0  → (I)

2x + 4y = 1  → (II)

Isolando x em I:

Substituindo na equação II, temos que:

Conhecendo o valor de y, encontraremos o valor de x:

Agora calcularemos x + y:

Questão 2

Uma matriz só possui inversa quando o seu determinante é diferente de 0. Analisando a matriz abaixo, quais são valores de x que fazem com que a matriz não admita inversa?

a) 0 e 1.

b) 1 e 2.

c) 2 e – 1.

d) 3 e 0.

e) – 3 e – 2.

Resolução:

Alternativa b.

Calculando o determinante de A, queremos os valores em que det(A) = 0.

det(A) = x ·(x – 3)  – 1 · ( – 2)

det(A) = x² – 3x + 2

det(A) = x² – 3x + 2 = 0

Resolvendo a equação do 2º grau, temos que:

  • a = 1
  • b = – 3
  • c = 2

Δ = b² – 4ac

Δ = (– 3) ² – 4·1·2

Δ= 9 – 8

Δ = 1

Por Raul Rodrigues de Oliveira
Professor de Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Raul Rodrigues de. "Matriz inversa"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/matriz-inversa.htm. Acesso em 04 de dezembro de 2021.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

U.F. Viçosa – MG

Sejam as matrizes

Onde x e y são números reais e M é a matriz inversa de A. Então o produto xy é:
a) 3/2  

b) 2/3    

c) 1/2

d) 3/4 

e) 1/4 

Questão 2

Multiplicando-se a matriz  pela matriz  ,obtém-se a matriz . Então o valor de x é:

a) -1    

b) 0 

c) 2

d) 3 

Mais Questões
Artigos Relacionados
Matriz, Adição de matrizes, Subtração de matrizes, Elementos de uma matriz, Elementos, Linha, Coluna, Elementos correspondentes, Ordem de uma matriz, Ordem de uma matriz, Representação de matrizes.
Entenda aqui as definições e formalizações da estrutura das matrizes. Veja também como operar seus elementos e os diferentes tipos de matrizes.
Entenda o que é uma matriz transposta. Conheça as propriedades de uma matriz transposta. Aprenda a encontrar a matriz transposta de uma determinada matriz.
Aprenda a calcular a multiplicação entre duas matrizes, bem como conheça o que é a matriz identidade e o que é a matriz inversa.
Matriz, Tipo de matrizes, Ordem das matrizes, Matriz linha, matriz coluna, Matriz nula, Matriz quadrada, Matriz diagonal, Matriz identidade, Matriz oposta, Matriz, Matriz iguais, Igualdade de matrizes.