PUBLICIDADE
Uma função é uma regra que relaciona cada elemento de um conjunto a um único elemento de outro. O primeiro conjunto é chamado de domínio da função, e o segundo é o contradomínio. Uma função pode ser classificada como injetora, sobrejetora e bijetora de acordo com o modo como os elementos do domínio são relacionados aos elementos do contradomínio. Neste artigo, discutimos quais características classificam uma função como sobrejetora.
Tópicos deste artigo
Conceito de função sobrejetora
Uma função é sobrejetora quando seu contradomínio e imagem são o mesmo conjunto. Em outras palavras, uma função é sobrejetora quando todos os elementos do contradomínio estão relacionados a, pelo menos, um elemento do domínio.
O diagrama a seguir representa uma função na qual a imagem e o contradomínio são iguais.
Esse diagrama realmente representa uma função, pois cada elemento do primeiro conjunto está relacionado a um único elemento do segundo. Observe também que essa função é sobrejetora, já que o contradomínio (ou seja, o segundo conjunto) é igual à imagem da função.
A imagem de uma função é o conjunto dos elementos do contradomínio que estão ligados a algum elemento do domínio. Assim, as funções sobrejetoras também podem ser compreendidas como aquelas nas quais não “sobram” elementos no contradomínio, como é o caso do exemplo acima.
Definição formal de função sobrejetora
Dada uma função f, definida no conjunto A, com contradomínio igual ao conjunto B, a função f é sobrejetora se, e somente se, para todo y pertencente ao conjunto B, existe um x pertencente ao conjunto A, tal que f(x) = y.
Em outras palavras, a função f é sobrejetora se todo elemento do contradomínio está relacionado a, pelo menos, um elemento do domínio, o que pode ser traduzido para: uma função é sobrejetora se sua imagem e contradomínio são o mesmo conjunto.
Algebricamente, podemos escrever:
Exemplo:
A função f(x) = 2x, com domínio e contradomínio igual ao conjunto dos números reais, é sobrejetora, pois seu contradomínio é exatamente igual à sua imagem. Note que essa função não seria sobrejetora se fosse definida com domínio e contradomínio iguais ao conjunto dos números naturais, pois, por exemplo, o número 3 do contradomínio não estaria relacionado a nenhum elemento do domínio.
Por Luiz Paulo Moreira
Graduado em Matemática