PUBLICIDADE
Na Matemática, o conceito de função é inteiramente ligado às questões de dependência entre duas grandezas variáveis. Toda função possui uma lei de formação algébrica que relaciona dois ou mais conjuntos através de cálculos matemáticos. Dizemos que para toda função temos um conjunto denominado domínio e sua respectiva imagem.
Por exemplo, podemos estabelecer uma relação de dependência entre o preço do litro do combustível e a quantidade de litros usados no abastecimento de um carro. Suponhamos que o preço do litro de gasolina seja R$ 2,50, dessa forma, podemos determinar a seguinte função y = 2,5 * x, que determina o preço a pagar y em decorrência da quantidade de litros abastecidos x.
A partir dessa função podemos construir a seguinte tabela de valores:
Toda situação problema envolvendo relações entre grandezas, é determinada por uma lei de formação algébrica. Observe mais um problema relacionado a uma situação cotidiana.
Numa viagem, um automóvel mantém uma velocidade constante de 60 km/h. Com o passar do tempo, esse veículo irá percorrer uma determinada distância. De tal modo, podemos determinar a distância percorrida pelo veículo relacionando a velocidade média e o tempo do movimento utilizando a seguinte expressão matemática, D = V * t, onde D: distância, V: velocidade média e t: tempo. Observe a tabela de valores para essa função:
Observe que nesse caso a variável dependente é a velocidade e a variável independente é o tempo.
As funções possuem grande aplicabilidade nas situações em geral relacionadas ao ensino da Matemática. Utilizamos funções na Administração, na Economia, na Física, na Química, na Engenharia, nas Finanças, entre outras áreas do conhecimento.
Observe o exemplo:
Uma indústria de brinquedos possui um custo mensal de produção equivalente a R$ 5.000,00 mais R$ 3,00 reais por brinquedo produzido. Determine a lei de formação dessa função e o valor do custo na produção de 2.000 peças.
A lei de formação será formada por uma parte fixa e outra variável. Observe:
C = 5000 + 3 * p, onde C: custo da produção e p: o número de brinquedos produzidos. Como serão produzidos 2.000 brinquedos temos:
C = 5000 + 3 * 2000
C = 5000 + 6000
C = 11.000
O custo na produção de 2.000 brinquedos será de R$ 11.000,00.
Por Marcos Noé
Graduado em Matemática
Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:
SILVA, Marcos Noé Pedro da. "Introdução à Função"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/introducao-funcao.htm. Acesso em 12 de agosto de 2022.
Qual a diferença entre regra de três simples e composta?
Clique e conheça as principais diferenças entre função e equação e aprenda...
Clique aqui, descubra o que é uma função bijetora e aprenda a identificar suas...
Entenda o que é uma função injetora e veja exemplos. Conheça também as...
Aprenda mais sobre a função sobrejetora, tipo em que o contradomínio é igual à...
Estudando o sinal de uma função do 2º grau.
Entender como funciona o nosso sistema eleitoral é de extrema importância. Leia!
Afinal, quais os motivos que levaram a Rússia a invadir o território ucraniano?
Tire um tempo para conhecer as funções do presidente da República
O território da Crimeia foi disputado por dois países. Descubra quais!
Votar é cooperar para a manutenção da democracia. Entenda!
PUBLICIDADE
Clique aqui e conheça um pouco da trajetória pessoal e política de Deodoro da Fonseca, o...
É inegável que as redes sociais hoje fazem parte do dia-a-dia de grande parte da população. Mas...
Nessa aula aprenderemos que em uma expressão numérica resolvemos primeiro a multiplicação,...