close
Whatsapp icon Whatsapp
Copy icon

Coordenadas do vértice da parábola

As coordenadas do vértice da parábola podem ser obtidas por meio de fórmulas que envolvem os coeficientes da função do segundo grau relacionados a ela.

Representação de uma parábola e a fórmula usada para encontrar suas raízes
Representação de uma parábola e a fórmula usada para encontrar suas raízes
Imprimir
Texto:
A+
A-

PUBLICIDADE

Uma função do segundo grau é aquela que pode ser escrita na forma f(x) = ax2 + bx + c. Toda função do segundo grau é representada geometricamente por uma parábola, que é uma figura geométrica plana. As parábolas ligadas a funções do segundo grau possuem ponto de máximo ou ponto de mínimo. O maior candidato a um desses pontos é chamado de vértice da parábola.

Tópicos deste artigo

Obtendo as coordenadas do vértice

As coordenadas do vértice podem ser obtidas de duas maneiras. A primeira utiliza uma das seguintes fórmulas:

xv = – b
       2a

yv = – Δ
        4a

Nessas fórmulas, xv e yv são as coordenadas do vértice da função do segundo grau, ou seja, V(xv, yv).

A segunda maneira de encontrar as coordenadas do vértice é a seguinte: suponha que x1 e x2 sejam as raízes de uma função do segundo grau, o ponto médio entre as raízes será a coordenada x do vértice. Sabendo disso, basta encontrar a imagem desse valor por meio da função analisada. Assim, dadas as raízes x1 e x2 de uma função f(x) = ax2 + bx + c, temos:

xv = x1 + x2
            2  

Não pare agora... Tem mais depois da publicidade ;)

yv = f(xv) = axv2 + bxv + c

Essa é segunda técnica usada para demonstrar as fórmulas dadas.

Demonstração das fórmulas

Dada uma função do segundo grau qualquer f(x) = ax2 + bx + c, com raízes x1 e x2, podemos encontrar a coordenada xv calculando a média entre essas raízes. Para tanto, lembre-se de que:

x1 = – b + √Δ
           2a 

x2 = – b – √Δ
           2a  

Portanto:

Substituindo esse valor na função f(x) = ax2 + bx + c, temos:

 

Fazendo o mínimo múltiplo comum dos denominadores, encontramos:

Exemplo

Encontre as coordenadas do vértice da função f(x) = x2 – 16.

Usando as fórmulas, obtemos:

xv = – b
        2a

xv = – 0
         2

xv = 0

yv = – Δ
        4a

yv = – (b2 – 4·a·c)
              4a   

yv = – (02 – 4·1·(– 16))
                  4     

yv = – (– 4·(– 16))
                4      

yv = – (64)
           4

yv = – 16

As coordenadas do vértice dessa função são V (0, – 16).

 


Por Luiz Paulo Moreira
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "Coordenadas do vértice da parábola"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/coordenadas-vertice-parabola.htm. Acesso em 19 de maio de 2022.

De estudante para estudante


no teorema de laplace, Como eu faço pra escolher a linha/coluna correta para eliminar? tendo uma linha e uma coluna com a mesma quantindade de zero????

Por Júlia Fernandes
Responder
Ver respostas

Oi meu nome é Amanda dos Santos Orsida e estou no 3 ano do ensino médio mas estou tendo muita dificuldade em matemática

Por Amanda Orsida
Responder
Ver respostas

Lista de exercícios


Exercício 1

Dada a função f(x) = x2 + 10x + 9, qual é a soma das coordenadas do vértice da parábola representada por ela?

a) – 21

b) – 26

c) – 10

d) – 16

e) 26

Exercício 2

Conhecendo o valor da coordenada x do vértice de uma função do segundo grau f(x), qual é a melhor maneira de encontrar a outra coordenada desse mesmo ponto?

a) Usar a fórmula: – Δ 
                                  2a

b) Substituir o valor da coordenada x do vértice no lugar de f(x).

c) Encontrar a média aritmética entre x e f(x).

d) Substituir o valor de x do vértice na função f(x) para encontrar a imagem desse ponto, que é a coordenada y do vértice.

e) NDA.

Estude agora


Mistura de soluções de solutos diferentes que reagem entre si

Os casos mais comuns de mistura de soluções de solutos diferentes que reagem entre si ocorrem quando juntamos...

Pré-Enem | Intertextualidade em obras literárias

O Pré-Enem é o intensivo preparatório do Brasil Escola para o Enem. Nele nós separamos os principais temas que...