O que é domínio, contradomínio e imagem?

O que é?

O que é domínio, contradomínio e imagem? Esses conjuntos numéricos estão presentes na definição e nos resultados obtidos em uma função.
PUBLICIDADE

Uma função é uma regra que relaciona cada elemento de um conjunto A a um único elemento de um conjunto B. De acordo com essa definição, as funções necessariamente devem relacionar todos os elementos do primeiro conjunto, mas nem todos os elementos do segundo conjunto serão “usados”. São nesses dois conjuntos que podemos encontrar o domínio, o contradomínio e a imagem de uma função.

Algebricamente, uma função é definida da seguinte maneira:

f: A → B
                                                                         y = f(x)

Em que f é a letra escolhida para representar a função, e y = f(x) é a regra da função.

O símbolo A → B quer dizer que os elementos do conjunto A serão avaliados na regra f(x) e terão como resultado um elemento do conjunto B. A letra x, em uma função, representa um elemento qualquer do conjunto A, por isso, é chamada de variável: pode assumir qualquer valor, desde que esse valor seja um dos elementos de A.

Além disso, x também é variável independente, pois é essa variável que determina qual elemento do conjunto B será relacionado ao elemento do conjunto A por meio da regra y = f(x).

A variável y é dependente da variável x, por essa razão, é nomeada como variável dependente. Em resumo, a variável x representa um elemento qualquer do conjunto A, e a variável y refere-se a um elemento qualquer do conjunto B.

O que é domínio, contradomínio e imagem?

Dada a função y = f(x) que relaciona os elementos do conjunto A aos elementos do conjunto B, podemos definir:

1 – O conjunto A é conhecido como domínio. Esse nome é escolhido para esse conjunto devido ao papel dos seus elementos na função. Lembre-se de que o conjunto A é que determina a variável independente. Portanto, os elementos do conjunto A possuem o “domínio” sobre os resultados da função, uma vez que os resultados de y obtidos dependem do valor x escolhido.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo – dada a função:

f: N → Z

y = 2x

O conjunto dos números naturais é o domínio, portanto, os números que poderão ser relacionados estão no conjunto:

N = {0, 1, 2, 3, 4, 5, 6, 7, …}

2 – O conjunto B é conhecido como contradomínio. Esse nome é escolhido pelo fato de que nem todos os elementos do conjunto B precisam ser usados para que a função seja válida. Além disso, esse nome remete à dependência que existe entre os conjuntos A e B.

O contradomínio é o conjunto em que encontraremos todos os números que podem ser relacionados aos elementos do domínio por meio da função f. Tomando novamente o exemplo anterior:

f: N → Z

y = 2x

O contradomínio é o conjunto formado por todos os números inteiros. Note que alguns números inteiros nunca poderão ser resultados de uma multiplicação de um número natural por 2, como o número 7. Assim, embora o número 7 pertença ao contradomínio, ele não pode ser relacionado a nenhum número no domínio.

3 – O subconjunto do contradomínio, formado por todos os seus elementos que se relacionam a algum elemento do domínio, é denominado de imagem.

Assim, na função anterior:

f: N → Z

y = 2x

Embora o conjunto de todos os números inteiros seja o contradomínio dessa função, apenas os números pares serão resultados de algum elemento do domínio aplicado na regra da função. Portanto, o conjunto imagem dessa função é o conjunto dos números pares.

 

 

Por Luiz Paulo Moreira
Graduado em Matemática

Os gráficos de algumas funções, por definição, possuem domínio, contradomínio e imagem
Os gráficos de algumas funções, por definição, possuem domínio, contradomínio e imagem

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "O que é domínio, contradomínio e imagem?"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/o-que-e/matematica/o-que-e-dominio-contradominio-imagem.htm. Acesso em 19 de janeiro de 2021.

Artigos Relacionados
Quer aprender o que é uma função sobrejetora? Entenda como esse tipo de função tem contradomínio e imagem iguais e descubra ainda como essa definição pode ser feita de outras formas. Conheça também outras características das funções sobrejetoras. Clique aqui e aprenda mais sobre esse assunto!
Você sabe o que é função? Conheça os diversos tipos de funções e suas classificações!
Saiba o que é o conjunto dos números naturais e também os subconjuntos dos naturais.
Clique para descobrir como e por que os números complexos foram criados, além de aprender sua representação algébrica e polar.
Clique para aprender o que são conjuntos numéricos e as principais características de cada um!
Clique e descubra o que é uma função do primeiro grau e obtenha exemplos e orientações para a construção de seu gráfico.
Clique e descubra o que é uma função do segundo grau e aprenda a encontrar suas raízes e a construir seu gráfico.
Clique e descubra o que são pontos de máximo e de mínimo e aprenda a encontrá-los nas funções do segundo grau.
Conjuntos Numéricos.
Definição, propriedades e gráficos da função de 2º grau.
Representação algébrica e importância dos números complexos.
Aprenda quais são os números naturais e entenda o conceito de sucessão. Veja também a ideia de paridade de um número natural com exemplos.
Conheça o conjunto dos números inteiros, o modo como esses números foram criados e algumas de suas utilidades.
Aprenda a solucionar exercícios com números inteiros. Acesse e fique por dentro!
Resolva estes exercícios sobre Números Complexos e tire todas as suas dúvidas no gabarito comentado!
Teste os seus conhecimentos: Faça exercícios sobre Máximo e Mínimo e veja a resolução comentada.
Teste os seus conhecimentos: Faça exercícios sobre Função de 2º Grau e veja a resolução comentada.
Teste os seus conhecimentos: Faça exercícios sobre Aplicações de uma Função de 1º grau e veja a resolução comentada.