Fundo Menu
Whatsapp icon Whatsapp
Copy icon

Funções trigonométricas do arco metade

A partir de um determinado ângulo, podemos encontrar o seno, o cosseno e a tangente da metade de sua medida através das funções trigonométricas do arco metade.

Confira como determinar as funções trigonométricas do arco metade
Confira como determinar as funções trigonométricas do arco metade
Imprimir
Texto:
A+
A-

PUBLICIDADE

O estudo da Trigonometria permite a determinação de valores de seno, cosseno e tangente para diversos ângulos com base em valores conhecidos. As fórmulas de adição de arcos são umas das mais utilizadas com esse objetivo:

sen (a + b) = sen a · cos b + sen b · cos a
sen (a – b) = sen a · cos b – sen b · cos a
cos (a + b) = cos a · cos b – sen a · sen b
cos (a – b) = cos a · cos b + sen a · sen b

tg (a + b) = tg a + tg b
                   1 – tg a · tg b

tg (a – b) = tg a – tg b
                  
1 + tg a · tg b

A partir dessas fórmulas, é simples determinar como proceder quando os ângulos a e b são iguais. Nesse caso, dizemos que se trata das funções trigonométricas do arco duplo. São elas:

sen (2a) = 2 · sen a · cos a
cos (2a) = cos² a – sen² a

tg (2a) = 2 · tg a
             
1 – tg² a

A partir dessas funções, determinaremos as funções trigonométricas do arco metade. Considere a seguinte identidade trigonométrica:

sen² a + cos² a = 1
sen² a = 1 – cos² a

Vamos substituir sen² a em cos (2a) = cos² a – sen² a:

cos (2a) = cos² a – sen² a
cos (2a) = cos² a – (1 – cos² a)
cos (2a) = cos² a – 1 + cos² a
cos (2a) = 2 · cos² a – 1

Não pare agora... Tem mais depois da publicidade ;)

Mas estamos à procura da fórmula adequada para o arco metade. Para tanto, considere que  é a metade do arco a, e onde houver 2a, utilizaremos apenas a:

Isolando o cos² (a/2):

Temos então a fórmula para o cálculo do cosseno do arco metade. A partir dela vamos determinar o seno de . A partir da identidade trigonométrica, temos:

sen² a + cos² a = 1
cos² a = 1 – sen² a

Substituindo cos² a na fórmula do cosseno do arco duplo, cos (2a) = cos² a – sen² a, teremos:

cos (2a) = cos² a – sen² a
cos (2a) = (1 – sen² a) – sen² a
cos (2a) = 1 – 2 · sen² a

Novamente, vamos considerar a metade dos arcos em cos (2a) = 1 – 2 · sen² a. Restará então:

Isolando o sen² (a/2), teremos:

Agora que também encontramos a fórmula do seno do arco metade, podemos determinar a tangente de . Logo:

Temos então determinada a fórmula para o cálculo da tangente do arco metade.



Por Amanda Gonçalves
Graduada em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

RIBEIRO, Amanda Gonçalves. "Funções trigonométricas do arco metade"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/funcao-trigonometrica-arco-metade.htm. Acesso em 07 de julho de 2022.

De estudante para estudante


Qual a diferença entre regra de três simples e composta?

Por Brasil Escola
Responder
Ver respostas

Como transformar fração em porcentagem?

Por Brasil Escola
Responder
Ver respostas

Videoaulas


PUBLICIDADE

Estude agora


Cem anos de solidão | Análise Literária

Assista a nossa videoaula para conhecer um pouco mais da obra “Cem anos de solidão”, um dos romances mais...

Quem foi Nelson Mandela?

Assista a nossa videoaula para conhecer a história de Nelson Mandela (1918-2013). Confira também, no nosso...