Topo
pesquisar

Progressão geométrica

Matemática

Uma progressão geométrica é uma sequência numérica onde todo termo é igual ao produto de seu antecessor com uma constante chamada razão da PG.
Progressão geométrica: sequência onde cada termo é igual ao produto de seu antecessor por uma constante
Progressão geométrica: sequência onde cada termo é igual ao produto de seu antecessor por uma constante
PUBLICIDADE

Uma progressão geométrica (PG) é uma sequência numérica onde cada termo é igual ao produto de seu antecessor com uma constante, chamada razão da PG. Em outras palavras, a diferença entre dois termos quaisquer e consecutivos de uma PG é uma constante.

Exemplo de progressão geométrica:

(1, 3, 9, 27, 81, …)

Cada termo dessa PG, exceto o primeiro, é resultado de um produto de seu antecessor por 3, pois 3 = 3·1, 9 = 3·3 e assim por diante.

A razão de uma PG é representada pela letra “q”. E seus elementos são representados por uma letra minúscula seguida de um número que indica a posição do número. Por exemplo, na PG acima, o termo a1 é o primeiro termo e é igual a 1. O termo a4 é o quarto termo e é igual a 27. Dessa forma, é costume indicar o enésimo termo de uma PG por an.

Fazendo uso da definição de PG, podemos escrever o enésimo termo como um produto de seu antecessor an – 1 pela razão. Assim, a definição das progressões geométricas também pode ser dada da seguinte maneira:

Veja também: Soma dos termos de uma progressão aritmética
 

Termo geral da PG

O termo geral de uma PG é uma expressão que pode ser usada para encontrar um termo qualquer de uma progressão geométrica. Esse termo também é expresso por an e a expressão/fórmula utilizada para determiná-lo é:

Não pare agora... Tem mais depois da publicidade ;)

Onde:

n é o índice do termo que queremos determinar, ou seja, está ligado à posição desse termo na PG;

a1 é o primeiro termo da progressão geométrica e

q é sua razão.

Por exemplo, para determinar o décimo termo da PG (1, 2, 4, 8, 16, …), podemos fazer:

an = a1·qn – 1

a10 = 1·210 – 1

Pois a1 = 1, q = 2 e n = 10. Prosseguindo nos cálculos:

a10 = 1·29

a10 = 29

a10 = 512

Soma dos termos de uma PG

Existem duas possibilidades para o cálculo da soma dos termos de uma PG. Ela pode ser finita ou o problema pode exigir a soma de uma quantidade finita de termos de uma PG infinita. Em ambos os casos, usamos a fórmula:

Se for necessário encontrar a soma dos termos de uma PG infinita, a fórmula a ser utilizada é:

Por fim, é possível encontrar o produto dos termos de uma PG finita. A fórmula usada para esse cálculo é:


 

Por Luiz Paulo Moreira
Graduado em Matemática

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Luiz Paulo Moreira. "Progressão geométrica"; Brasil Escola. Disponível em <https://brasilescola.uol.com.br/matematica/progressao-geometrica.htm>. Acesso em 15 de dezembro de 2018.

Assista às nossas videoaulas
loading...
Lista de Exercícios
Questão 1

A sequência seguinte é uma progressão geométrica, observe: (2, 6, 18, 54...). Determine o 8º termo dessa progressão.   

Questão 2

(Vunesp – SP – Adaptado)

Várias tábuas iguais estão em uma madeireira. Elas deverão ser empilhadas respeitando a seguinte ordem: uma tábua na primeira vez e, em cada uma das vezes seguintes, tantas quantas já estejam na pilha. Por exemplo:

Determine a quantidade de tábuas empilhadas na 12ª pilha.

Mais Questões
  • SIGA O BRASIL ESCOLA
Brasil Escola