Topo
pesquisar

Inverso de um número complexo

Matemática

PUBLICIDADE

O inverso de um número é a troca do numerador pelo denominador e vice-versa, desde que essa fração ou número seja diferente de zero. Em um número complexo acontece da mesma forma: um número complexo para ter seu inverso é preciso ser não nulo, por exemplo:

Dado um número complexo qualquer não nulo z = a + bi, o seu inverso será representado por z–1.

Veja o cálculo do inverso do número complexo z = 1 – 4i. 

 

Portanto, o inverso do número complexo z = 1 – 4i será:
 

Concluímos que o inverso de um número complexo não nulo terá a seguinte generalidade: z = a + bi




Quando multiplicamos um número complexo pelo seu inverso o resultado será sempre igual a 1, z * z–1 = 1. Observe a multiplicação do complexo z = 1 – 4i pelo seu inverso:

A multiplicação de números complexos ocorre da seguinte maneira:

(a+bi)*(c +di) = ac + adi + bci + bdi² = ac + (ad + bc)i + bd(–1) = ac + (ad + bc)i – bd = (ac – bd) + (ad + bc)i


 

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Números Complexos - Matemática - Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro Da. "Inverso de um número complexo"; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/inverso-um-numero-complexo-1.htm>. Acesso em 29 de abril de 2016.

PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
  • SIGA O BRASIL ESCOLA