Notificações
Você não tem notificações no momento.
Novo canal do Brasil Escola no
WhatsApp!
Siga agora!
Whatsapp icon Whatsapp
Copy icon

Critérios de divisibilidade

Para facilitar algumas divisões envolvendo resto zero, é preciso entender as regras de divisibilidade que permitem otimizar tempo na hora dos cálculos.

Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Para entender os critérios de divisibilidade, é essencial conhecer a operação divisão. Essa operação faz parte do nosso dia a dia, como quando saímos com os amigos e dividimos a conta do restaurante, quando fazemos uma receita de brigadeiro e dividimos nas forminhas, dividimos o salário pela quantidade de dias trabalhados, entre outras aplicações.

Na matemática, a conta de divisão é a base para a resolução de vários problemas. Usamos, por exemplo, para calcular as médias, a fatoração e porcentagem. A fim de facilitar, existem alguns critérios em que podemos “cortar caminhos” para uma divisão mais rápida, considerando que o resto da divisão seja sempre igual a zero.

Os critérios de divisibilidades facilitam bastante realizar os cálculos de divisão.
Os critérios de divisibilidades facilitam bastante realizar os cálculos de divisão.

Tópicos deste artigo

Regras de divisibilidade

Divisibilidade por 2:

A divisibilidade por 2 é feita em qualquer número par, ou seja, quaisquer números terminados em 0, 2, 4, 6 ou 8 são, com certeza, números divisíveis por 2. Vamos aos exemplos:

64:2 = 32

32:2 = 16

16:2 = 8

8:2 = 4

4:2 = 2

2:2 = 1

12.490:2 = 6.245

Veja também: Números pares e ímpares

Não pare agora... Tem mais depois da publicidade ;)

Divisibilidade por 3:

Segundo esse critério, para encontrarmos os números que são divisíveis por 3, basta somarmos os algarismos dos números e se o resultado for divisível por 3, certamente, o número é divisível por 3. Lembrando que, nesse caso, a tabuada do 3 deve estar na ponta da língua! Veja como é simples pelo exemplo:

O número 14.321, se separarmos os algarismos fazendo a sua soma: 1 + 4 + 3 + 2 + 1 = 11. Nesse caso 11 não é divisível por 3, portanto o número 14.321 não é divisível por 3.

Se analisarmos o número 1.233, a soma dos algarismos será 1 + 2 + 3 + 3 = 9. O número 9 é divisível por 3, então, 1.233 é sim divisível por 3 e resulta em 411.

Divisibilidade por 4:

Para saber se um número é divisível por 4, temos duas opções: a primeira delas é que todo número que termina em 00 com certeza é divisível por 4; e a segunda é quando o número formado pelos dois últimos algarismos for divisível por 4, esse número é também divisível por 4. Por exemplo:

1.200 é divisível por 4, pois termina em 00.

5.832 é divisível por 4, porque o final 32 é um número divisível por 4.

616 é divisível por 4, porque o final 16 é divisível por 4.

1.335 não é divisível por 4 pois não termina em 00 e o final 35 não é um número divisível por 4, o que faz a divisão não ter como resultado um número inteiro.

Divisibilidade por 5:

Qualquer número natural que tenha final 0 ou 5 é divisível por 5. É só pensar na tabuada do 5 e observar como cada número termina.

Por exemplo, os números 935, 140, 85 e 70 são todos divisíveis por 5, pois terminam em 0 ou 5. Já os números 357, 121, 92 e 551, por exemplo, não são divisíveis por 5, pois não terminam em 0 ou 5.

Divisibilidade por 6:

O critério para a divisibilidade por 6 são todos os números que são divisíveis por 2 e por 3 ao mesmo tempo. Lembrando que os números que são divisíveis por 2 são todos os números pares, isso já exclui os números ímpares da divisibilidade por 6, e a soma os algarismos desses números precisam ser divisíveis por 3. Vamos analisar os seguintes exemplos:

1.324 é um número par (divisível por 2) e a soma dos algarismos 1 + 3 + 2 + 4 = 10, ou seja, não é divisível por 3, portanto 1.324 não é divisível por 6.

510 é um número par (divisível por 2) e a soma dos algarismos 5 + 1 + 0 = 6, ou seja, é divisível por 3, portanto 510 é um número divisível por 6.

15.420 é um número par (divisível por 2) e a soma dos algarismos 1 + 5 + 4 + 2 + 0 = 12, ou seja, é divisível por 3, portanto 15.420 é divisível por 6.

2.331 é ímpar, ou seja, não é divisível por 2 e apesar da soma dos algarismos 2 + 3 + 3 + 1 = 9 e ser divisível por 3, o número 2.331 não é divisível por 6.

Divisibilidade por 7:

Esse critério é diferente dos demais, mas é bem simples. Para verificarmos se um número é divisível por 7, basta multiplicar o último algarismo por 2 e com o resultado subtrair dos números que sobraram (não incluir o último), se esse resultado for divisível por 7, o número é divisível por 7. Se o número foi grande, repetir o processo até conseguir verificar se o número é divisível por 7. Segue o exemplo:

574: separar o último número e multiplicar por 2 => 4 x 2 = 8. Desse resultado, subtrair do número que sobrou 57 – 8 = 49. Como 49 é divisível por 7, então, o número 574 é divisível por 7.

7.644: separar o último número de multiplicar por 2 => 4 x 2 = 8. Desse resultado, subtrair do número que sobrou 764 – 8 = 756. Como o número é grande, repetimos o processo. Separar o último número de multiplicar por 2 => 6x 2 = 12; desse resultado, subtrair do número que sobrou 75 – 12 = 63. Como 63 é divisível por 7, então o número 7.644 é divisível por 7.

Divisibilidade por 8:

Segundo esse critério, os números que são divisíveis por 8 são todos aquelas que possuem final 000 ou que os três últimos algarismos sejam divisíveis por 8 (bem parecido com o critério de divisibilidade por 4). Por exemplo:

Os números 12.000, 5.000 e 125.000 são todos divisíveis por 8, pois terminam em 000.

O número 1.345.880 também é divisível por 8, pois 880 dividido por 8 é 110.

O número 225.243.168 é divisível por 8, pois 168 dividido por 8 é 21.

O número 12.445 não é divisível por 8, pois 445 não tem um resultado exato quando é dividido por 8.

Divisibilidade por 9:

O critério de divisibilidade por 9 segue a mesma linha de raciocínio do critério de divisibilidade por 3, ou seja, vamos somar os algarismos e se o resultado por divisível por 9, o número será divisível por 9:

1.575 é divisível por 9, pois 1 + 5 + 7 + 5 = 18. Como 18 é divisível por 9 (9 x 2), então, o número 1.575 é divisível por 9.

525.951 é divisível por 9, pois 5 + 2 + 5 + 9 + 5 + 1 = 27. Como 18 é divisível por 9 (9 x 2), então, o número 1.575 é divisível por 9.

Divisibilidade por 10:

Um dos critérios mais simples de divisibilidade! Os números que são divisíveis por 10 terminam sempre com 0.

Exercícios resolvidos

1) Determine o valor de Y abaixo de forma que o número seja divisível por 3 e por 5:

16Y

Resolução:

A regra para que o número seja divisível por 3 é que a soma dos algarismos seja divisível por 3 e a regra da divisibilidade por 5 é que o número seja final 0 e 5.

Nesse caso, se pensarmos no número final 0, a soma dos algarismos seria: 1 + 6 + 0 = 7, como 7 não é divisível por 3, o número 160 não atende aos dois critérios.

A outra opção seria o final 5. Ao somar os algarismos teremos: 1 + 6 + 5 = 12. Como 12 é divisível por 3 e o final 5 é divisível por 5, o número 165 atende os dois critérios, sendo y = 5.


2) (PM SE – IBFC). Um número é composto por 3 algarismos. O algarismo da centena é o 7 e o da unidade é o 4. A soma dos possíveis algarismos da dezena desse número de modo que ele seja divisível por 3 é:

a) 15
b) 18
c) 12
d) 9

Resolução:

A regra para que o número seja divisível por 3 é que a soma dos algarismos seja divisível por 3. Nesse caso, chamaremos o número de x, então, temos a seguinte situação:

7X4

Nesse caso, as possibilidades para que essa soma seja divisível por 3 seriam:

7 + 1 + 4 = 12

7 + 4 + 4 = 15

7 + 7 + 4 = 18

Como o exercício pede a soma dos possíveis algarismos, temos: 1 + 4 + 7 = 12. Sendo a resposta a letra c.


3) Verifique se o número 123.411.571.200 é divisível por 6.

Resolução:

Para que o número seja divisível por 6, é necessário que ele simultaneamente divisível por 2 e por 3, ou seja, o número precisa ser par (divisível por 2) e a soma dos algarismos precisam ser divisíveis por 3.

O número 123.411.571.200 é par, o que já atende ao primeiro requisito. Vamos somar os algarismos 1 + 2 + 3 + 4 + 1 + 1 + 5 + 7 + 1 + 2 + 0 + 0 = 27. Como 27 é divisível por 3, então, o número é divisível por 3 e atende a todos os requisitos, sendo divisível também por 6.


Por Danielle Guilherme
Professora de Matemática

Escritor do artigo
Escrito por: Danielle Guilherme Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

GUILHERME, Danielle. "Critérios de divisibilidade"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/criterios-divisibilidade.htm. Acesso em 21 de novembro de 2024.

De estudante para estudante


Videoaulas


Lista de exercícios


Exercício 1

Verifique se o número 152 489 476 250 é divisível por 6.

Exercício 2

O número 678 426 258 132 é divisível por 9?