Soma de uma P.G. finita

Matemática

Perpassando pelo estudo das sequências, estudamos dois tipos de sequências que possuem uma regularidade em seus termos, em razão disso somos capazes de terminar a soma de uma P.G. finita sem conhecer todos os termos que serão somados.
PUBLICIDADE

O estudo das progressões está pautado nas sequências que possuem um padrão matemático. De acordo com este padrão é possível determinar diversos elementos de uma sequência apenas sabendo seu primeiro elemento e a razão dessa sequência.

Em determinadas situações é necessário calcularmos a somatória dos termos de uma determinada sequência. Nas sequências do tipo de progressão geométrica, podemos encontrar dois tipos de somatória, a somatória de termos finitos e a somatória de termos infinitos - Soma dos Termos de uma PG Infinita . Veremos então a expressão para calcularmos a soma de finitos termos de uma P.G, utilizando apenas o termo a1 e a razão q.

Sendo assim, vejamos a demonstração da expressão da Soma da P.G. finita.

Seja (a1, a2, …, an) uma P.G, na qual sua razão é: q ≠ 1

Portanto, a expressão que representa a soma destes n termos é dada da seguinte forma:

Não pare agora... Tem mais depois da publicidade ;)

Façamos uma multiplicação por q em toda a expressão, ou seja, devemos multiplicar os dois lados da igualdade:

Façamos a subtração da expressão (2) pela expressão (1):

Veja que para utilizarmos esta expressão, devemos ter uma razão diferente de 1.

Vale ressaltar que poderíamos ter subtraído a expressão 1 da expressão 2. Se fizermos isto, iremos obter a seguinte expressão:

Com isso basta aprendermos a utilizar estas expressões (que são iguais, cabe a você decidir qual utilizar) para resolvermos questões que envolvem esse conceito.


Por Gabriel Alessandro de Oliveira
Graduado em Matemática
Equipe BrasilEscola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Gabriel Alessandro de. "Soma de uma P.G. finita "; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/soma-uma-pg-finita.htm. Acesso em 27 de setembro de 2020.

Assista às nossas videoaulas
Lista de Exercícios
Questão 1

(Vunesp) Dado x0 = 1, uma sequência de números x1, x2, x3, … satisfaz a condição xn = axn-1, para todo inteiro n ≥ 1, em que a é uma constante não nula.

a) Quando a = 2, obtenha o termo x11 dessa sequência.

b) Quando a = 3, calcule o valor da soma x1 + x2 + … + x8.

Questão 2

(UFAM) Se a soma dos três primeiros termos de uma PG decrescente é 14 e seu produto é 64, então sendo a, b e c os três primeiros termos, o valor de a + b2 + c3 é igual a:

a) 14

b) 64

c) 16

d) 08

e) 32

Mais Questões