Notificações
Você não tem notificações no momento.
Novo canal do Brasil Escola no
WhatsApp!
Siga agora!
Whatsapp icon Whatsapp
Copy icon

Taxa Nominal e Taxa Real de Juros

Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Um dos elementos principais em Matemática Financeira são as taxas de juros que correspondem à taxa de remuneração do capital no determinado tempo. As taxas de juros são classificadas de formas diferentes de acordo com o tipo de avaliação percentual que está sendo feita. Enfatizaremos nosso estudo nas taxas nominais e taxas reais.
A taxa nominal de juros é usada para demonstrar os efeitos da inflação no período analisado, tendo por base os fundos financeiros (empréstimos). Por exemplo, vamos supor que um empréstimo no valor de R$ 5 000,00 seja pago ao final de seis meses com o valor monetário de R$ 7 000,00. O cálculo da taxa nominal de juros será feita da seguinte forma: juros pagos / valor nominal do empréstimo.

Juros
7 000 – 5 000 = 2 000

Taxa nominal de juros
2 000 / 5 000 = 0,4 → 40%

Portanto, a taxa nominal de juros de um empréstimo de R$ 5 000,00 que teve como quitação o valor de R$ 7 000, teve uma taxa nominal de juros de 40%.


No caso da taxa real de juros, o efeito inflacionário não existe, por isso ela tende a ser menor que a taxa nominal. Isso ocorre porque ela é formada através da correção da taxa efetiva pela taxa de inflação do período da operação. A taxa real pode ser calculada pela seguinte expressão matemática: (1 + in) = (1 + r) * (1 + j), onde:

in = taxa de juros nominal
j = taxa de inflação do período
r = taxa real de juros


Podemos notar que se a taxa de inflação for nula (igual a 0) as taxas de juros nominal e real serão coincidentes.

Acompanhe o exemplo:
Um banco, ao realizar um empréstimo, oferece taxas pré-estabelecidas, emprestando R$ 10 000,00 receberá, no prazo máximo de um ano, o valor de R$ 13 000,00. Se a inflação do período foi de 3%. Determine a taxa real de juros do empréstimo?

Calculando a taxa nominal de juros
13 000 – 10 000 = 3 000
3 000 / 10 000 = 0,3 → 30%
Taxa nominal (in) = 30%


Determinando a taxa real de juros utilizando a expressão (1 + in) = (1 + r) * (1 + j).
in = 30% = 0,3
j = 3% = 0,03
r = ?

(1 + 0,3) = (1 + r) * (1 + 0,03)
1,3 = (1 + r) * (1,03)
1,3 = 1,03 + 1,03r
1,3 – 1,03 = 1,03r
0,27 = 1,03r
r = 0,27/1,03
r = 0,2621
r = 26,21%

A taxa real de juros do empréstimo é de aproximadamente 26,21%.

Não pare agora... Tem mais depois da publicidade ;)

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Matemática Financeira - Matemática - Brasil Escola

Escritor do artigo
Escrito por: Marcos Noé Pedro da Silva Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro da. "Taxa Nominal e Taxa Real de Juros"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/taxa-nominal-taxa-real-juros.htm. Acesso em 18 de dezembro de 2024.

De estudante para estudante


Videoaulas