PUBLICIDADE
O inverso de um número é a troca do numerador pelo denominador e vice-versa, desde que essa fração ou número seja diferente de zero. Em um número complexo acontece da mesma forma: um número complexo para ter seu inverso é preciso ser não nulo, por exemplo:
Dado um número complexo qualquer não nulo z = a + bi, o seu inverso será representado por z–1.
Veja o cálculo do inverso do número complexo z = 1 – 4i.
Portanto, o inverso do número complexo z = 1 – 4i será:
Concluímos que o inverso de um número complexo não nulo terá a seguinte generalidade: z = a + bi
Quando multiplicamos um número complexo pelo seu inverso o resultado será sempre igual a 1, z * z–1 = 1. Observe a multiplicação do complexo z = 1 – 4i pelo seu inverso:
A multiplicação de números complexos ocorre da seguinte maneira:
(a+bi)*(c +di) = ac + adi + bci + bdi² = ac + (ad + bc)i + bd(–1) = ac + (ad + bc)i – bd = (ac – bd) + (ad + bc)i
Por Marcos Noé
Graduado em Matemática