Notificações
Você não tem notificações no momento.
Whatsapp icon Whatsapp
Copy icon

Determinando uma função afim pelo valor de dois pontos

Descobrindo a lei de formação de uma função afim, quando os valores de apenas dois pontos são conhecidos. Para isso, veremos as expressões para determinarmos os coeficientes por meio de uma expressão que depende apenas dos valores de cada ponto.

Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Vamos determinar a função que passa por dois pontos. Para isso, precisamos encontrar as coordenadas destes dois pontos, sendo que a coordenada y’ é determinada pelo valor da função na coordenada x’ (x1, f(x1)), (x2, f(x2)).

Pela definição de função afim, temos que ela é determinada pela seguinte expressão f(x)=ax+b, ou seja, para determinar tal função, basta encontrarmos os coeficientes a, b. Veremos que para descobrir estes coeficientes precisamos apenas de dois pontos e o valor da função nesses pontos.

Antes de mostrarmos a expressão do caso geral, vejamos como proceder em um exemplo.

Com f(1)=4 e f(2)=6, temos, então, dois pontos e os valores da função nestes pontos.

Para f(1) temos: f(1) = 4 = a.1+b
Para f(2) temos: f(2) = 6 = a.2+b

Destacaremos essas duas relações de igualdade:

6=2a+b (-), se subtrairmos uma igualdade da outra, teremos o seguinte resultado:
4=a+b   
2=a,       ou seja, a é igual a 2. Descobrimos o valor de um dos coeficientes. Para encontrarmos o outro, basta substituirmos o resultado em uma das igualdades. Usaremos a segunda:

4=a+b

como a=2 teremos ,  4=2+b  assim teremos,  b=2

Como f(x)=ax+b e a=2 e b=2, temos que esta função, para f(1)=4  e f(2)=6, será a seguinte:
f(x)=2x+b.

Não pare agora... Tem mais depois da publicidade ;)

Mas este é o processo realizado para um caso específico. Como seria a expressão para determinarmos os valores dos coeficientes de qualquer função? Veremos agora.

Seja y1=f(x1) e y2=f(x2), sendo estes pontos, pontos distintos. Teremos que a expressão destes pontos será dada da seguinte forma:

y1=f(x1)=ax1+b
y2=f(x2)=ax2+b, faça a subtração da expressão debaixo pela de cima. Com isso, teremos:

Expressão obtida após a subtração das duas equações.

Tendo a expressão para o coeficiente a, substituiremos a expressão para esse coeficiente em y1.

Obtendo a expressão para o coeficiente (b)


Desta forma, veja que as expressões para os coeficientes a, b, são determinadas apenas pelos valores dos pontos, valores estes que conhecemos.

Com isso, vimos que é possível determinar uma função afim, conhecendo apenas os valores de dois pontos.

Por Gabriel Alessandro de Oliveira
Graduado em Matemática
Equipe Brasil Escola
 

Matriz e determinante - Matemática -   Brasil Escola 

Escritor do artigo
Escrito por: Gabriel Alessandro de Oliveira Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Gabriel Alessandro de. "Determinando uma função afim pelo valor de dois pontos"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/determinando-uma-funcao-afim-pelo-valor-dois-pontos.htm. Acesso em 18 de setembro de 2024.

De estudante para estudante