Fundo Menu
Whatsapp icon Whatsapp
Copy icon

Aplicações de uma Função de 1º grau

Exemplos de aplicação de uma função de 1º grau
Exemplos de aplicação de uma função de 1º grau
Imprimir
Texto:
A+
A-

PUBLICIDADE

Exemplo 1

Uma pessoa vai escolher um plano de saúde entre duas opções: A e B.
Condições dos planos:
Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por consulta num certo período.
Plano B: cobra um valor fixo mensal de R$ 110,00 e R$ 25,00 por consulta num certo período.

Temos que o gasto total de cada plano é dado em função do número de consultas x dentro do período pré – estabelecido.
Vamos determinar:
a) A função correspondente a cada plano.
b) Em qual situação o plano A é mais econômico; o plano B é mais econômico; os dois se equivalem.

a) Plano A: f(x) = 20x + 140
Plano B: g(x) = 25x + 110

b) Para que o plano A seja mais econômico:
g(x) > f(x)
25x + 110 > 20x + 140
25x – 20x > 140 – 110
5x > 30
x > 30/5
x > 6

Para que o Plano B seja mais econômico:
g(x) < f(x)
25x + 110 < 20x + 140
25x – 20x < 140 – 110
5x < 30
x < 30/5
x < 6

Para que eles sejam equivalentes:
g(x) = f(x)
25x + 110 = 20x + 140
25x – 20x = 140 – 110
5x = 30
x = 30/5
x = 6

O plano mais econômico será:
Plano A = quando o número de consultas for maior que 6.
Plano B = quando número de consultas for menor que 6.

Os dois planos serão equivalentes quando o número de consultas for igual a 6.

Exemplo 2

Na produção de peças, uma fábrica tem um custo fixo de R$ 16,00 mais um custo variável de R$ 1,50 por unidade produzida. Sendo x o número de peças unitárias produzidas, determine:

a) A lei da função que fornece o custo da produção de x peças;
b) Calcule o custo de produção de 400 peças.

Respostas

a) f(x) = 1,5x + 16

b) f(x) = 1,5x + 16
f(400) = 1,5*400 + 16
f(400) = 600 + 16
f(400) = 616

O custo para produzir 400 peças será de R$ 616,00.

Exemplo 3

Um motorista de táxi cobra R$ 4,50 de bandeirada mais R$ 0,90 por quilômetro rodado. Sabendo que o preço a pagar é dado em função do número de quilômetros rodados, calcule o preço a ser pago por uma corrida em que se percorreu 22 quilômetros?

f(x) = 0,9x + 4,5
f(22) = 0,9*22 + 4,5
f(22) = 19,8 + 4,5
f(22) = 24,3

O preço a pagar por uma corrida que percorreu 22 quilômetros é de R$ 24,30.

Não pare agora... Tem mais depois da publicidade ;)

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro da. "Aplicações de uma Função de 1º grau"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/aplicacoes-uma-funcao-1-grau.htm. Acesso em 12 de agosto de 2022.

De estudante para estudante


Qual a diferença entre regra de três simples e composta?

Por Brasil Escola
Responder
Ver respostas

Como transformar fração em porcentagem?

Por Brasil Escola
Responder
Ver respostas

Lista de exercícios


Exercício 1

(UE – PA) Nas feiras de artesanato de Belém do Pará, é comum, no período natalino, a venda de árvores de natal feitas com raiz de patchouli. Um artesão paraense resolveu incrementar sua produção investindo R$ 300,00 na compra de matéria-prima para confeccioná-las ao preço de custo de R$ 10,00 a unidade. Com a intenção de vender cada árvore ao preço de R$ 25,00, quantas deverá vender para obter lucro?

Exercício 2

(Fuvest – SP) Determine a função que representa o valor a ser pago após um desconto de 3% sobre o valor x de uma mercadoria.

PUBLICIDADE

Estude agora


Murilo Mendes

Nesta videoaula, você conhecerá um pouco mais sobre a vida e a obra de Murilo Mendes, um importante poeta do...

Continente Americano: aspectos gerais e divisão territorial

Assista à nossa aula sobre o continente americano e conheça os aspectos marcantes da geografia desse território....