Whatsapp icon Whatsapp
Copy icon

Aplicações de uma Função de 1º grau

Matemática

Exemplos de aplicação de uma função de 1º grau
Exemplos de aplicação de uma função de 1º grau
PUBLICIDADE

Exemplo 1

Uma pessoa vai escolher um plano de saúde entre duas opções: A e B.
Condições dos planos:
Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por consulta num certo período.
Plano B: cobra um valor fixo mensal de R$ 110,00 e R$ 25,00 por consulta num certo período.

Temos que o gasto total de cada plano é dado em função do número de consultas x dentro do período pré – estabelecido.
Vamos determinar:
a) A função correspondente a cada plano.
b) Em qual situação o plano A é mais econômico; o plano B é mais econômico; os dois se equivalem.

a) Plano A: f(x) = 20x + 140
Plano B: g(x) = 25x + 110

b) Para que o plano A seja mais econômico:
g(x) > f(x)
25x + 110 > 20x + 140
25x – 20x > 140 – 110
5x > 30
x > 30/5
x > 6

Para que o Plano B seja mais econômico:
g(x) < f(x)
25x + 110 < 20x + 140
25x – 20x < 140 – 110
5x < 30
x < 30/5
x < 6

Para que eles sejam equivalentes:
g(x) = f(x)
25x + 110 = 20x + 140
25x – 20x = 140 – 110
5x = 30
x = 30/5
x = 6

O plano mais econômico será:
Plano A = quando o número de consultas for maior que 6.
Plano B = quando número de consultas for menor que 6.

Os dois planos serão equivalentes quando o número de consultas for igual a 6.

Exemplo 2

Na produção de peças, uma fábrica tem um custo fixo de R$ 16,00 mais um custo variável de R$ 1,50 por unidade produzida. Sendo x o número de peças unitárias produzidas, determine:

a) A lei da função que fornece o custo da produção de x peças;
b) Calcule o custo de produção de 400 peças.

Respostas

a) f(x) = 1,5x + 16

b) f(x) = 1,5x + 16
f(400) = 1,5*400 + 16
f(400) = 600 + 16
f(400) = 616

O custo para produzir 400 peças será de R$ 616,00.

Exemplo 3

Um motorista de táxi cobra R$ 4,50 de bandeirada mais R$ 0,90 por quilômetro rodado. Sabendo que o preço a pagar é dado em função do número de quilômetros rodados, calcule o preço a ser pago por uma corrida em que se percorreu 22 quilômetros?

f(x) = 0,9x + 4,5
f(22) = 0,9*22 + 4,5
f(22) = 19,8 + 4,5
f(22) = 24,3

O preço a pagar por uma corrida que percorreu 22 quilômetros é de R$ 24,30.

Não pare agora... Tem mais depois da publicidade ;)

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro da. "Aplicações de uma Função de 1º grau"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/aplicacoes-uma-funcao-1-grau.htm. Acesso em 17 de outubro de 2021.

Lista de Exercícios
Questão 1

(UE – PA) Nas feiras de artesanato de Belém do Pará, é comum, no período natalino, a venda de árvores de natal feitas com raiz de patchouli. Um artesão paraense resolveu incrementar sua produção investindo R$ 300,00 na compra de matéria-prima para confeccioná-las ao preço de custo de R$ 10,00 a unidade. Com a intenção de vender cada árvore ao preço de R$ 25,00, quantas deverá vender para obter lucro?

Questão 2

(Fuvest – SP) Determine a função que representa o valor a ser pago após um desconto de 3% sobre o valor x de uma mercadoria.

Mais Questões
Artigos Relacionados
Clique e confira o que são os conjuntos domínio, contradomínio e imagem e entenda como se comportam seus elementos na função.
Saiba mais sobre o estudo dos sinais com os gráficos da função de 1º grau.