PUBLICIDADE
As relações envolvendo grandezas são analisadas do ponto de vista das funções matemáticas. As funções possuem inúmeras características e detalham desde cálculos cotidianos até situações de maior complexidade. No caso da Matemática Financeira, as funções são relacionadas às aplicações de capitais nos regimes de juros simples e compostos, os quais utilizamos as funções do 1º grau e exponencial respectivamente. Os gráficos representativos das funções citadas servem de análise sobre o andamento do montante formado mês a mês, observando qual aplicação é mais vantajosa dentro de um determinado período. Observe os gráficos das situações a seguir, eles representarão o andamento da aplicação de acordo com o tipo de capitalização escolhida.
Suponhamos que o capital de R$ 500,00 foi aplicado a uma taxa de 2% ao mês nos regimes de juros simples e compostos. Vamos representar a função de cada aplicação e os gráficos correspondentes aos primeiros meses.
Juros simples
M = C + j
J = C * i * t
Montante ao final do quarto mês será igual a R$ 540,00.
Juros compostos
M = C * (1 + i)t
Montante ao final do quarto mês será igual a R$ 541,22
Gráficos
Juros simples
Juro composto
Ao compararmos os dados e os gráficos percebemos que na capitalização simples os juros crescem de forma linear, enquanto na capitalização composta os juros crescem de forma exponencial. De acordo com os gráficos percebemos que a aplicação utilizando juros compostos é mais rentável que a capitalização simples, pois no regime simples os juros são fixos, isto é, calculados somente sobre o montante inicial. No caso dos compostos, são aplicados juros sobre juros, dessa forma, o valor de cada juro mensal é sempre maior que o do mês anterior.
Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola