Notificações
Você não tem notificações no momento.
Whatsapp icon Whatsapp
Copy icon

Área do triângulo por meio da Geometria Analítica

Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Vamos determinar a área de um triângulo do ponto de vista da geometria analítica. Assim, considere três pontos quaisquer, não colineares, A (xa, ya), B (xb, yb) e C (xc, yc). Como esses pontos não são colineares, ou seja, não estão numa mesma reta, eles determinam um triângulo. A área desse triângulo será dada por:

Observe que a área será metade do módulo do determinante das coordenadas dos pontos A, B e C.
 

Exemplo 1. Calcule a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6).
Solução: Primeiro passo é fazer o cálculo do determinante das coordenadas dos pontos A, B e C. Teremos:

Assim, obtemos:

Portanto, a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6) é 12.

Exemplo 2. Determine a área do triângulo de vértices A (1, 3), B (2, 5) e C (-2,4).
Solução: Primeiro devemos realizar o cálculo do determinante.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo 3. Os pontos A (0, 0), B (0, -8) e C (x, 0) determinam um triângulo de área igual a 20. Encontre o valor de x.
Solução: Sabemos que a área do triângulo de vértices A, B e C é 20. Então,

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática
Equipe Brasil Escola

Geometria Analítica - Matemática - Brasil Escola

Escritor do artigo
Escrito por: Marcelo Rigonatto Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

RIGONATTO, Marcelo. "Área do triângulo por meio da Geometria Analítica"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/area-um-triangulo.htm. Acesso em 30 de dezembro de 2024.

De estudante para estudante