PUBLICIDADE
O berquélio (Bk) é um elemento químico sintético de número atômico 97, o qual pertence à serie dos actinídeos, localizados no grupo 12 e sétimo período da Tabela Periódica, além de fazer parte dos elementos transurânicos, isto é, aqueles com números atômicos maiores que o urânio. Ademais, é obtido principalmente em reatores nucleares e aceleradores de partículas por meio de bombardeamento de núcleos de átomos mais leves com partículas alfa ou nêutrons.
Nesse sentido, as propriedades do berquélio, como a sua meia-vida e os modos de decaimento, são estudadas para entender melhor os comportamentos dos elementos pesados e suas possíveis utilizações. Embora não tenha um uso amplo fora dos laboratórios, o seu estudo contribui significativamente para o conhecimento sobre a física nuclear e a química de elementos pesados; bem como na compreensão sobre os limites da Tabela Periódica e os desafios relacionados à síntese e manipulação de elementos superpesados.
Leia também: Actínio — outro metal pertencente ao grupo dos actinídeos
Tópicos deste artigo
- 1 - Resumo sobre o berquélio
- 2 - Propriedades do berquélio
- 3 - Características do berquélio
- 4 - Onde o berquélio é encontrado?
- 5 - Ocorrência do berquélio
- 6 - Obtenção do berquélio
- 7 - Aplicações do berquélio
- 8 - Precauções com o berquélio
- 9 - História do berquélio
- 10 - Curiosidades sobre o berquélio
Resumo sobre o berquélio
-
O berquélio é um elemento químico sintético, metálico e sólido nas condições normais de temperatura e pressão.
-
Pertence à série dos actinídeos e é classificado como um elemento transurânico.
-
Tem alta radioatividade, emitindo radiação alfa e beta.
-
É produzido em pequenas quantidades em reatores nucleares.
-
Suas aplicações são principalmente em pesquisa científica, para estudar elementos transurânicos, e na síntese de elementos mais pesados.
-
Apresenta alta densidade, ponto de fusão em torno de 986 °C e ponto de ebulição por volta de 2627 °C.
-
Seus isótopos têm massas que variam de 240-252 u.m.a.
-
Foi descoberto em 1949 no Laboratório Nacional de Berkeley, Califórnia.
-
Seu nome é uma homenagem à cidade na qual foi descoberto: Berkeley.
Propriedades do berquélio
-
Símbolo: Bk
-
Massa atômica: 247 u
-
Número atômico: 97
-
Configuração eletrônica: [Rn] 5f9 7s2
-
Eletronegatividade: 1,3 (escala Pauling)
-
Série química: actinídeos
-
Ponto de fusão: 986 °C
-
Ponto de ebulição: 2627 °C
-
Energia de ionização: 608 kJ/mol (primeira ionização)
-
Densidade: 14,78 g/cm³
-
Estado de oxidação: +3, +4
-
Raio atômico (van der Waals): 244 pm
Características do berquélio
No que tange às suas caraterísticas, o berquélio é um metal sólido e extremamente denso pertencente à série dos actinídeos. Caracteriza-se pela sua alta radioatividade (principalmente ao emitir radiação alfa) e pela sua produção sintética em laboratórios especializados. Em vista disso, sua aparência não é amplamente descrita devido à sua raridade e à necessidade de manipulação em ambientes controlados. Nesse sentido, ele é considerado moderadamente reativo, reagindo principalmente com oxigênio, água e ácidos para formar compostos.
Onde o berquélio é encontrado?
Diante de sua natureza sintética, o berquélio não ocorre naturalmente na crosta terrestre, sendo produzido artificialmente em laboratórios, sobretudo em reatores nucleares e aceleradores de partículas, por meio do bombardeamento de átomos de urânio ou cúrio com partículas alfa.
Ocorrência do berquélio
O berquélio é um elemento sintético, portanto, não ocorre naturalmente na crosta terrestre. Contudo, vale destacar que ele tem vários isótopos, todos radioativos, com massas atômicas variando de 240 a 252. O berquélio-249 é o mais comum e mais estudado, com meia-vida de cerca de 330 dias e apresentando emissão de partículas beta, transformando-se em califórnio-249, conforme a equação de decaimento abaixo:
Bk-249 → Cf-249 + β− + νe
Sendo νe um antineutrino emitido durante o decaimento beta e β− uma partícula beta (elétron).
Obtenção do berquélio
A obtenção do berquélio se dá por meio de processos nucleares complexos, e basicamente está limitada à sua raridade e ao custo elevado dos procedimentos necessários para sua produção, sendo produzido em pequenas quantidades. Sendo assim, a seguir, veja como ocorre cada etapa envolvida nesse processo:
-
Bombardeamento nuclear: o processo começa com o bombardeamento de alvos compostos por urânio ou cúrio, os quais são expostos a partículas alfa (núcleos de hélio) ou nêutrons em um reator nuclear ou acelerador de partículas.
-
Reação nuclear: no reator nuclear, os nêutrons capturados pelos núcleos de cúrio provocam a formação de cúrio-244, que pode capturar mais nêutrons e decair para formar berquélio-249. Alternativamente, o bombardeamento com partículas alfa pode produzir berquélio diretamente.
-
Extração e separação inicial: após o bombardeamento, a mistura resultante contém berquélio com outros produtos de reação e materiais residuais. Sendo assim, técnicas de separação química são aplicadas para isolar o berquélio, como a dissolução da mistura em ácidos específicos.
-
Purificação química: resinas de troca iônica são utilizadas para purificar ainda mais o berquélio, isolando-o com base em suas propriedades químicas específicas.
-
Isolamento final: o berquélio purificado é finalmente isolado em uma forma utilizável, muitas vezes como um sal ou composto químico específico.
Aplicações do berquélio
Devido à sua alta radioatividade, o berquélio é usado em experimentos de física nuclear para estudar reações nucleares e processos de fissão. Sendo assim, destacamos algumas de suas principais aplicações no âmbito científico:
-
Pesquisa científica: ele é utilizado para estudar as propriedades químicas e físicas dos elementos transurânicos, pois isso ajuda a expandir o conhecimento sobre os elementos da série dos actinídeos e suas interações.
-
Síntese: ele é usado na produção de elementos mais pesados, como o tenesso (elemento 117). Por exemplo, o berquélio-249 pode ser bombardeado com núcleos de cálcio para sintetizar esses novos elementos.
-
Estudos de propriedades dos actinídeos: é usado em experimentos que visam entender melhor o comportamento dos actinídeos, particularmente em relação à sua química de coordenação e interação com outros materiais.
-
Física nuclear: ele serve como um alvo em experimentos da física nuclear para investigar reações nucleares e processos de fissão, contribuindo para o avanço do conhecimento em energia nuclear e física de partículas.
Veja também: Protactínio — outro metal pertencente ao grupo dos actinídeos
Precauções com o berquélio
O berquélio é um elemento radioativo, portanto, exige precauções rigorosas ao ser manuseado. Primeiro, é essencial utilizar equipamentos de proteção individual, como luvas e roupas especiais, para evitar o contato direto com a pele. Além disso, o manuseio deve ocorrer em ambientes controlados, como laboratórios equipados com sistemas de contenção de radiação, para proteger contra a exposição à radiação alfa e beta emitida por ele.
Outra medida importante é a utilização de blindagem adequada, como placas de chumbo, para minimizar a exposição à radiação, bem como a ventilação do local deve ser eficiente para evitar a inalação de partículas radioativas. Por fim, todos os resíduos e materiais contaminados devem ser descartados, seguindo-se protocolos de segurança para resíduos radioativos, a fim de prevenir a contaminação ambiental e proteger a saúde pública.
História do berquélio
A história do berquélio começou em 1949, quando foi descoberto por uma equipe de cientistas, liderada por Albert Ghiorso, Stanley G. Thompson e Glenn T. Seaborg, no Laboratório Nacional de Berkeley, pertencente à Universidade da Califórnia. Nesse contexto, a descoberta ocorreu durante a investigação sistemática dos elementos transurânicos — elementos químicos com números atômicos maiores que o urânio.
Em meio a isso, esse elemento recebeu seu nome em homenagem à cidade de Berkeley, onde o laboratório no qual foi descoberto está situado. O processo de descoberta envolveu a criação de berquélio-243 pela irradiação de amerício-241 com partículas alfa em um cíclotron (acelerador de partículas). Tal resultado foi seguido por outros isótopos, como o berquélio-249, produzido posteriormente em reações nucleares com curto período de semidesintegração.
Por fim, devido à sua natureza altamente radioativa e à dificuldade de produção em quantidades significativas, atualmente esse elemento está limitado a pesquisas científicas avançadas, sobretudo por seu papel na exploração dos limites da Tabela Periódica e no avanço da química nuclear. Assim, seus estudos ajudaram a expandir o conhecimento sobre os elementos da série dos actinídeos, além de contribuir para a síntese de elementos mais pesados, como o tenesso.
Curiosidades sobre o berquélio
-
O berquélio foi nomeado em homenagem à cidade de Berkeley, onde está localizada a Universidade da Califórnia, onde ele foi descoberto.
-
O isótopo mais estável do berquélio, o Bk-247, tem uma meia-vida de aproximadamente 1380 anos.
-
É um dos elementos mais raros e caros do mundo, com apenas alguns gramas sendo produzidos anualmente.
Fontes
BERKELIUM, N. In: OXFORD ENGLISH DICTIONARY. [S. l.]: Oxford University Press, 2023. Disponível em: https://oed.com/dictionary/berkelium_n.
BERKELIUM. Annals of the ICRP, [s. l.], v. 11, n. 1, p. 1212–1219, 1983. Disponível em: http://journals.sagepub.com/doi/10.1177/0146645383011-1300198.
HOBART, D. E.; PETERSON, J. R. Berkelium. In: THE CHEMISTRY OF THE ACTINIDE AND TRANSACTINIDE ELEMENTS. Dordrecht: Springer Netherlands, 2007. p. 1444-1498. Disponível em: http://link.springer.com/10.1007/1-4020-3598-5_10.
HULET, E. K.; THOMPSON, S. G.; GHIORSO, A. Isotopes of Curium, Berkelium, and Californium. Physical Review, [s. l.], v. 95, n. 6, p. 1703–1704, 1954. Disponível em: https://link.aps.org/doi/10.1103/PhysRev.95.1703.
JYLLIAN KEMSLEY. Berkelium chemistry exposed. C&EN Global Enterprise, [s. l.], v. 94, n. 35, p. 9-9, 2016. Disponível em: https://pubs.acs.org/doi/10.1021/cen-09435-notw2.
METABOLIC DATA FOR BERKELIUM. Annals of the ICRP, [s. l.], v. 6, n. 2–3, p. 111–112, 1981. Disponível em: http://journals.sagepub.com/doi/10.1016/0146-6453%2881%2990122-6.
MOORE, F. L.; MULLINS, W. T. Separation of Berkelium from Other Elements. Application to Purification and Radiochemical Determination of Berkelium. Analytical Chemistry, [s. l.], v. 37, n. 6, p. 687-689, 1965. Disponível em: https://pubs.acs.org/doi/abs/10.1021/ac60225a014.
NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. PubChem. Element Summary for AtomicNumber 97, Berkelium. [s. l.]. National Library of Medicine (US), 2024. Disponível em: https://pubchem.ncbi.nlm.nih.gov/element/Berkelium. Acesso em: 25 jun. 2024.
NO. 97 DUBBED BERKELIUM. The Science News-Letter, [s. l.], v. 57, n. 4, p. 51, 1950. Disponível em: https://www.jstor.org/stable/3927712?origin=crossref.
TRABESINGER, A. Peaceful berkelium. Nature Chemistry, [s. l.], v. 9, n. 9, p. 924–924, 2017. Disponível em: https://www.nature.com/articles/nchem.2845.
WELLER, M. et al. A química dos actinídeos. In: QUÍMICA INORGÂNICA. 6. ed. Porto Alegre: Bookman, 2017. p. 643–650.
WHITE, F. D.; DAN, D.; ALBRECHT‐SCHMITT, T. E. Frontispiece: Contemporary Chemistry of Berkelium and Californium. Chemistry – A European Journal, [s. l.], v. 25, n. 44, 2019. Disponível em: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.201984461.