Notificações
Você não tem notificações no momento.
Whatsapp icon Whatsapp
Copy icon

Área de uma região triangular através do determinante

A expressão para o cálculo de área de uma região triangular é conhecida desde os primeiros passos da geometria na escola. Entretanto, quando mesclamos este conceito com a geometria analítica é necessário abarcarmos também conceitos do cálculo de determinantes.

Imprimir
Texto:
A+
A-
Ouça o texto abaixo!

PUBLICIDADE

Bem, sabemos que os elementos que fundamentam a geometria analítica são os pontos e suas coordenadas, já que através destes podemos calcular distâncias, coeficientes angulares das retas e áreas de figuras planas.

Dentre os cálculos das áreas de figuras planas, existe uma expressão que determina a área de uma região triangular utilizando apenas as coordenadas dos vértices do triângulo.

Portanto, consideremos um triângulo com vértices de coordenadas quaisquer e assim vejamos como calcular a área desse triângulo apenas com as coordenadas dos seus vértices.

Triângulo no plano cartesiano


O parâmetro D é determinado pela matriz das coordenadas dos vértices do triângulo ABC.

 

Note que o parâmetro D é a mesma matriz determinante para verificar a condição de alinhamento de três pontos (ver Condição de alinhamento de três pontos).

Não pare agora... Tem mais depois da publicidade ;)

Assim sendo, caso você verifique a área de um suposto triângulo e o determinante dê zero, saiba que na verdade esses três pontos não constituem um triângulo, pois estão alinhados (por isso a área é zero).

Uma observação importante em relação à expressão para o cálculo da área é quanto ao Parâmetro D estar em módulo, ou seja, usaremos o seu valor absoluto. Por se tratar de área, não devemos adotar um determinante negativo, pois isso resultará em uma área negativa e isso não existe.

Vejamos um exemplo para uma melhor compreensão:

“Determine a área da região triangular que tem como vértices os pontos A (4,0), B (0,0) e C (2,2)”.

Portanto, a área da região triangular do triângulo ABC é de 4 u.a (unidades de área).


Por Gabriel Alessandro de Oliveira
Graduado em Matemática
Equipe BrasilEscola

Escritor do artigo
Escrito por: Gabriel Alessandro de Oliveira Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

OLIVEIRA, Gabriel Alessandro de. "Área de uma região triangular através do determinante"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/Area-uma-regiao-triangular-atraves-determinante.htm. Acesso em 21 de dezembro de 2024.

De estudante para estudante