Raiz de uma Equação Completa do 2º grau

Quando dizemos “raiz de uma equação”, nos referimos ao resultado final de uma equação qualquer. As equações de 1º grau (do tipo ax + b = 0, onde a e b são números reais e a≠0) possuem apenas uma raiz, um único valor para sua incógnita.
As equações de 2º grau (do tipo ax² + bx + c = 0, onde a, b e c são números reais e a≠0) podem ter até duas raízes reais. O número de raízes de uma equação do 2º grau irá depender do valor do discriminante ou delta: ∆.

Equações completas do 2º grau são resolvidas aplicando a fórmula de Bháskara:


 

Condições de existência da raiz de uma equação do 2º grau:

Nenhuma raiz real: quando delta for menor que zero. (negativo)
∆ < 0
x² - 4x + 5 = 0

∆ = b² - 4ac
∆ = (-4)² - 4*1*5
∆ = 16 – 20
∆ = - 4


Uma única raiz real: quando delta for igual a zero. (nulo)
∆ = 0
4x² - 4x + 1 = 0

∆ = b² - 4ac
∆ = (-4)² - 4*4*1
∆ = 16 – 16
∆ = 0


Duas raízes reais: quando delta for maior que zero. (positivo)
∆ > 0
x² - 5x + 6 = 0

∆ = b² - 4ac
∆ = (-5)² - 4*1*6
∆ = 25 - 24
∆ = 1

Por Marcos Noé
Graduado em Matemática

Deseja fazer uma citação?
SILVA, Marcos Noé Pedro da. "Raiz de uma Equação Completa do 2º grau"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/raiz-uma-equacao-2-grau.htm. Acesso em 05 de dezembro de 2025.

Lista de exercícios


Exercício 1

(CESGRANRIO) O maior número que se deve subtrair de cada fator do produto 5x8, para que esse produto diminua de 36 unidades, é:

a)3           b) 5           c) 6           d) 8           e) 9

VER TODAS AS QUESTÕES

Exercício 2

(UFPE) Se x é um número real positivo tal que ao adicionarmos 1 ao seu inverso obtemos como resultado o número x, qual é o valor de x?

a) 1 – √5
       2

b) 1 + √5
      2

c) 1

d) 1 + √3
      2

e) 1 – √5
      

VER TODAS AS QUESTÕES

Exercício 3

Resolva a equação de segundo grau completa: x2 + 3x – 10 = 0.

VER TODAS AS QUESTÕES

Exercício 4

Escreva a equação a seguir de forma reduzida (x – 1)(x + 1) = 2(x – 1).

VER TODAS AS QUESTÕES