O einstênio é um elemento químico sintético que não ocorre naturalmente na Terra e é pertencente à série dos actinídeos. Dessa forma, suas características físicas e químicas são conhecidas principalmente por meio de experimentos e cálculos teóricos, uma vez que ele é produzido em quantidades muito pequenas.
Desse modo, sua presença é extremamente rara e se dá exclusivamente em condições controladas e artificiais como resultado de experimentos científicos em reatores nucleares ou aceleradores de partículas, onde elementos mais pesados, como cúrio ou plutônio, são irradiados com nêutrons para capturar partículas e formar novos núcleos. O einstênio é representado pelo símbolo Es e tem número atômico 99.
Leia também: Plutônio — elemento radioativo usado na bomba atômica que destruiu Nagasaki
O einstênio é um metal de coloração metálica prateada, altamente radioativo, cuja emissão de partículas alfa contribui para sua instabilidade. Devido a isso, é difícil manipulá-lo em grandes quantidades. Ademais, ele tem um ponto de fusão relativamente alto, em torno de 860 °C, o que indica que é sólido em temperatura ambiente. No entanto, seu ponto de ebulição não é bem estabelecido devido à dificuldade de produção de quantidades suficientes para medições precisas, mas estima-se que seja próximo de 996 °C.
Quimicamente, ele compartilha características típicas dos actinídeos e pode existir em vários estados de oxidação, principalmente +2, +3 e +4, com o estado +3 sendo o mais estável. Esse comportamento é semelhante ao de outros elementos da série dos actinídeos, como o califórnio (Cf) e o berquélio (Bk). Já a sua baixa eletronegatividade reflete a tendência que ele tem em perder elétrons e formar cátions.
Veja também: Rádio — outro elemento metálico altamente radioativo e perigoso
Devido à sua natureza sintética, o einstênio não é encontrado naturalmente na crosta terrestre, algo muito comum entres elementos transurânicos, sendo produzido apenas em quantidades extremamente limitadas em reatores nucleares e em aceleradores de partículas.
A obtenção do einstênio não é muito diferente dos outros elementos radioativos sintéticos, pois trata-se de um processo complexo que envolve várias etapas em ambientes controlados. Sendo assim, neste tópico, falaremos um pouco sobre cada etapa envolvida nesse processo:
Como o einstênio não ocorre de naturalmente, ele se restringe a suas formas sintéticas. Nesse contexto, podemos citar as formas isotópicas conhecidas desse metal e que foram sintetizadas até agora. Cada uma contém diferentes números de nêutrons em seus núcleos, e todas são radioativas, instáveis e com meias-vidas relativamente curtas, conforme explicaremos a seguir.
No que tange às aplicações do einstênio, ainda há um longo caminho a percorrer em termos práticos, visto que os isótopos desse elemento são todos altamente radioativos, o que os torna úteis apenas para fins científicos e em condições controladas de laboratório. Nesse contexto, podemos citar três grandes eixos de aplicabilidade desse elemento: a pesquisa cientifica, a síntese de novos elementos e os estudos de radioatividade. Diante disso, a seguir, entenda melhor o objetivo de cada seguimento.
Assim como outros materiais radioativos, o manuseio do einstênio requer algumas precauções essenciais para garantir a segurança dos trabalhadores e do ambiente, considerando a alta toxicidade e os riscos associados a esse elemento. Sendo assim, é fundamental ter planos de emergência em caso de exposição acidental ou vazamento de material radioativo, bem como outras medidas, por exemplo:Parte superior do formulário
Parte inferior do formulário
Saiba mais: Radioatividade — o que é, tipos e quais perigos ela realmente oferece
A história do einstênio começa em 1952 e se conecta com a do elemento químico férmio, quando foram descobertos de maneira inesperada durante a análise dos resíduos da primeira explosão de uma bomba de hidrogênio, realizada pelo governo dos Estados Unidos no Atol de Enewetak, no Oceano Pacífico.
Os cientistas da Universidade da Califórnia, em Berkeley, liderados por Albert Ghiorso, estavam examinando os destroços radioativos da explosão e identificaram um novo elemento, que mais tarde foi batizado de einstênio, em homenagem ao famoso físico Albert Einstein.
A descoberta foi feita pela detecção de partículas alfa emitidas pelo novo elemento. No entanto, a identificação inicial foi mantida em segredo por cerca de um ano devido ao clima de insegurança nacional e às tensões da Guerra Fria. Portanto, foi só em 1955 que a descoberta foi divulgada ao público.
Desde então, o einstênio tem sido um objeto de interesse principalmente acadêmico, com pesquisas focadas na exploração de suas propriedades nucleares e químicas, representando um marco na química nuclear e na expansão do conhecimento sobre os elementos pesados.
Créditos da imagem
[1] Wikimedia Commons (reprodução)
Fontes
AHMAD, I.; WAGNER, F. Half-life of the longest-lived einsteinium isotope-252Es. Journal of Inorganic and Nuclear Chemistry, [s. l.], v. 39, n. 9, p. 1509–1511, 1977. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/0022190277800894.
FIRST PROPERTIES OF EINSTEINIUM DETERMINED. Chemical & Engineering News Archive, [s. l.], v. 61, n. 6, p. 7–8, 1983. Disponível em: https://pubs.acs.org/doi/abs/10.1021/cen-v061n006.p007b.
GHIORSO, A. et al. New Elements Einsteinium and Fermium, Atomic Numbers 99 and 100. Physical Review, [s. l.], v. 99, n. 3, p. 1048–1049, 1955. Disponível em: https://link.aps.org/doi/10.1103/PhysRev.99.1048.
GUSEVA, L. I. et al. Experiments on the creation of einsteinium and fermium in a cyclotron. The Soviet Journal of Atomic Energy, [s. l.], v. 1, n. 2, p. 193–197, 1956. Disponível em: http://link.springer.com/10.1007/BF01506931.
HAIRE, R. G. Einsteinium. In: THE CHEMISTRY OF THE ACTINIDE AND TRANSACTINIDE ELEMENTS. Dordrecht: Springer Netherlands, 2010. p. 1577–1620. Disponível em: http://link.springer.com/10.1007/978-94-007-0211-0_12.
HAIRE, R. G.; BAYBARZ, R. D. Studies of einsteinium metal. Le Journal de Physique Colloques, [s. l.], v. 40, n. C4, p. 101–102, 1979. Disponível em: http://www.edpsciences.org/10.1051/jphyscol:1979431.
HARVEY, B. G. et al. New Isotopes of Einsteinium. Physical Review, [s. l.], v. 104, n. 5, p. 1315–1319, 1956. Disponível em: https://link.aps.org/doi/10.1103/PhysRev.104.1315.
HEENEN, P. H.; NAZAREWICZ, W. Quest for superheavy nuclei. Europhysics News, [s. l.], v. 33, n. 1, p. 5–9, 2002. Disponível em: http://www.europhysicsnews.org/10.1051/epn:2002102.
JARMAN, S. Mysteries of einsteinium unveiled. Physics World, [s. l.], v. 34, n. 3, p. 7i-7i, 2021. Disponível em: https://iopscience.iop.org/article/10.1088/2058-7058/34/03/06.
MEIERFRANKENFELD, D.; BURY, A.; THOENNESSEN, M. Discovery of scandium, titanium, mercury, and einsteinium isotopes. Atomic Data and Nuclear Data Tables, [s. l.], v. 97, n. 2, p. 134–151, 2011. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0092640X10000914.
METABOLIC DATA FOR EINSTEINIUM. Annals of the ICRP, [s. l.], v. 6, n. 2–3, p. 113–115, 1981. Disponível em: http://journals.sagepub.com/doi/10.1016/0146-6453%2881%2990123-8.
MILLER, J. L. Einsteinium chemistry captured. Physics Today, [s. l.], v. 74, n. 4, p. 14–16, 2021. Disponível em: https://pubs.aip.org/physicstoday/article/74/4/14/398996/Einsteinium-chemistry-capturedThe-creation-of-a.
NATRAJAN, L. S.; FAULKNER, S. The blue hue of einsteinium. Nature Chemistry, [s. l.], v. 13, n. 5, p. 393–395, 2021. Disponível em: https://www.nature.com/articles/s41557-021-00693-3.
NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. PubChem. PubChem Element Summary for AtomicNumber 99, Einsteinium. [S.l.]. National Library of Medicine (US), National Center for Biotechnology Information, 2024. Disponível em: https://pubchem.ncbi.nlm.nih.gov/element/99. Acesso em: 31 jul. 2024.
PETERSON, J. R. et al. Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS). Journal of Alloys and Compounds, [s. l.], v. 271–273, p. 876–878, 1998. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0925838898002382.
PETERSON, J. R. et al. Preparation, characterization, and decay of einsteinium(II) in the solid state. Le Journal de Physique Colloques, [s. l.], v. 40, n. C4, p. 111–113, 1979. Disponível em: http://www.edpsciences.org/10.1051/jphyscol:1979435.
REDFERN, J. Einsteinium declassified. Nature Chemistry, [s. l.], v. 8, n. 12, p. 1168–1168, 2016. Disponível em: https://www.nature.com/articles/nchem.2676.
ROBINSON, S. M. et al. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochimica Acta, [s. l.], v. 108, n. 9, p. 737–746, 2020. Disponível em: https://www.degruyter.com/document/doi/10.1515/ract-2020-0008/html.
SCHUMAN, R. P. et al. The half-life, neutron capture and fission cross-sections of long lived einsteinium-254. Journal of Inorganic and Nuclear Chemistry, [s. l.], v. 6, n. 1, p. 1–2, 1958. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/0022190258800925.
SPIRLET, J. C.; PETERSON, J. R.; ASPREY, L. B. Preparation and Purification of Actinide Metals. In: ADVANCES IN INORGANIC CHEMISTRY. [S. l.: s. n.], 1987. v. 31, p. 1–41. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0898883808602202.
WELLER, M. et al. A química dos actinídeos. In: QUÍMICA INORGÂNICA. 6. ed. Porto Alegre: Bookman, 2017. p. 643–650.
YUICHI, H. et al. Alpha decay properties of light einsteinium isotopes. Nuclear Physics A, [s. l.], v. 500, n. 1, p. 90–110, 1989. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/0375947489901310.
Fonte: Brasil Escola - https://brasilescola.uol.com.br/quimica/einstenio-es.htm