Decomposição vetorial

A decomposição vetorial é uma ferramenta matemática usada para encontrar as projeções vertical e horizontal de um vetor.

A decomposição vetorial é uma operação algébrica empregada quando se deseja descobrir a componente horizontal e componente vertical de determinado vetor. Para fazer a decomposição vetorial, precisamos conhecer a posição do vetor original e a posição do ângulo em relação à horizontal ou à vertical.

Leia também: Quais são as operações com vetores?

Resumo sobre decomposição vetorial

O que é um vetor?

Os vetores na Física são segmentos de reta no formato de seta que identificam que uma grandeza física é vetorial; sendo assim, possuem um módulo, direção e sentido.

Para saber mais detalhes sobre vetores, clique aqui.

O que é grandeza vetorial?

As grandezas vetoriais são as grandezas que precisam ser descritas em termos do seu módulo (valor númerico), unidade de medida, direção e sentido. Na Física existem diversas grandezas vetoriais, como a velocidade, deslocamento, aceleração, força e muitas outras.

Para que serve a decomposição vetorial?

A decomposição vetorial é uma operação algébrica envolvendo vetores frequentemente usada na Física e na Matemática. Por meio dela encontramos as componentes horizontal e vertical de um vetor, também chamadas de projeções ou sombras, servindo para calcularmos os valores das forças em uma situação de equilíbrio ou identificar se as forças estão em equilíbrio em um corpo no plano inclinado, viga, ponto de apoio e muitos outros.

Como fazer a decomposição vetorial?

Para fazer a decomposição vetorial podemos seguir alguns passos:

Vetor na diagonal para a direita apontando para cima para explicar a decomposição vetorial.

Vetor na diagonal para a direita apontando para baixo.

Vetor na diagonal para a esquerda apontando para cima.

Vetor na diagonal para a esquerda apontando para baixo.

Identificação das diferentes posições do ângulo para explicar a decomposição vetorial.

\({F}_{x} = F \cdot \cos{\theta} \)

\({F}_{y} = F \cdot \ sen{\theta} \)

\({F}_{x} = F \cdot \ sen{\theta} \)

\({F}_{y} = F \cdot \ cos{\theta} \)

Exemplo

Calcule o tamanho da componente horizontal e da componente vertical de um vetor com orientação nordeste e tamanho de 2 unidades, sabendo que o ângulo formado entre ele e a sua componente horizontal é de 45°. Dados: \(sen 45° = cos 45° = 0,7\).

Resolução:

Identificação da posição do vetor para fazer a decomposição vetorial em um exemplo.

Identificação da posição do ângulo para fazer a decomposição vetorial em um exemplo.

\({u}_{x} = u \cdot \cos \theta \)

\({u}_{x} = u \cdot \cos 45^\circ \)

\({u}_{x} = 2 \cdot 0,7 \)

\({u}_{x} = 1,4 \)

E o módulo da componente vertical, através da fórmula:

\({u}_{y} = u \cdot \ sen\theta \)

\({u}_{y} = u \cdot \ sen 45^\circ \)

\({u}_{y} = 2 \cdot 0,7 \)

\({u}_{y} = 1,4 \)

Exercícios resolvidos sobre decomposição vetorial

Questão 1

Calcule a componente horizontal e vertical de um vetor de tamanho 10 m faz um ângulo de 30º com a vertical. Dado sen 30° = 0,5 e cos 30° = 0,9.

A) 4 m e 8 m

B) 5 m e 9 m

C) 6 m e 10 m

D) 7 m e 11 m

E) 8 m e 12 m

Resolução:

Alternativa B.

Como o ângulo está na vertical, entre a componente vertical e o vetor original, podemos calcular a componente horizontal por meio da fórmula:

\({F}_{x} = F \cdot \ sen{\theta} \)

\({F}_{x} = 10 \cdot \ sen{30^\circ} \)

\(F_x = 10 \cdot 0,5\)

\(F_x = 5m\)

E a componente vertical por meio da fórmula:

\({F}_{y} = F \cdot \ cos{\theta} \)

\({F}_{y} = 10 \cdot \ cos{30^\circ} \)

\(F_{y} = 10\cdot {0,9}\)

\(F_{y} = 9m\)

Questão 2

Sabendo que um vetor na diagonal esquerda tem sentido para baixo, qual o sentido da sua componente horizontal e componente vertical?

A) Componente horizontal para a direita e componente vertical para cima

B) Componente horizontal para a esquerda e componente vertical para cima

C) Componente horizontal para a direita e componente vertical para baixo

D) Componente horizontal para a esquerda e componente vertical para baixo

E) Nesse caso não temos componentes horizontal e vertical.

Resolução:

Alternativa D.

Quando temos um vetor na diagonal para a esquerda apontando para baixo, a sua componente horizontal fica acima dele, ou seja, na horizontal apontando para a esquerda. Já a componente vertical fica ao lado direito dele, ou seja, na vertical apontando para baixo.

Fontes

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos da Física: Mecânica. 8. ed. Rio de Janeiro, RJ: LTC, 2009.

NUSSENZVEIG, Herch Moysés. Curso de física básica: Mecânica (vol. 1). 5 ed. São Paulo: Editora Blucher, 2015.


Fonte: Brasil Escola - https://brasilescola.uol.com.br/fisica/decomposicao-vetorial.htm