Topo
pesquisar

Raízes da Função de 2º Grau

Matemática

PUBLICIDADE

Determinar a raiz de uma função é calcular os valores de x que satisfazem a equação do 2º grau ax² + bx + c = 0, que podem ser encontradas através do Teorema de Bháskara:



Número de raízes reais da função do 2º grau

Dada a função f(x) = ax² + bx + c, existirão três casos a serem considerados para a obtenção do número de raízes. Isso dependerá do valor do discriminante Δ.


1º caso → Δ > 0: A função possui duas raízes reais e distintas, isto é, diferentes.


2º caso → Δ = 0: A função possui raízes reais e iguais. Nesse caso, dizemos que a função possui uma única raiz.


3º caso → Δ < 0: A função não possui raízes reais.



Soma e produto das raízes

Seja a equação, ax² + bx + c = 0, temos que:

Se Δ ≥ 0, a soma das raízes dessa equação é dada por  e o produto das raízes por  . De fato, x’ e x’’ são as raízes da equação, por isso temos:




Soma das raízes





Produto das raízes



Efetuando a multiplicação, temos: 

 


Substituindo Δ por b² – 4ac, temos:




Após a simplificação, temos:

 

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola



Função de 2º Grau - Funções - Matemática - Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro Da. "Raízes da Função de 2º Grau"; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/raizes-funcao.htm>. Acesso em 29 de julho de 2016.

PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
  • SIGA O BRASIL ESCOLA