Topo
pesquisar

Forma Trigonométrica de um Número Complexo

Matemática

PUBLICIDADE

Sabemos que um número complexo possui forma geométrica igual a z = a + bi, onde a recebe a denominação de parte real e b parte imaginária de z. Por exemplo, para o número complexo z = 3 + 5i, temos a = 3 e b = 5 ou Re(z) = 3 e Im(z) = 5. Os números complexos também possuem uma forma trigonométrica ou polar, que será demonstrada com base no argumento de z (para z ≠ 0).
Considere o número complexo z = a + bi, em que z ≠ 0, dessa forma temos que: cosӨ = a/p e senӨ = b/p. Essa relações podem ser escritas de outra forma, acompanhe:

cosӨ = a/p → a = p*cosӨ

senӨ = b/p → b = p*senӨ


Vamos substituir os valores de a e b no complexo z = a + bi.

z = p*cosӨ + p*senӨi → z = p*( cosӨ + i*senӨ)

Essa forma trigonométrica é de grande utilidade nos cálculos envolvendo potenciações e radiciações.

Exemplo 1
Represente o número complexo z = 1 + i na forma trigonométrica.
Resolução:
Temos que a = 1 e b = 1



A forma trigonométrica do complexo z = 1 + i é z = √2*(cos45º + sen45º * i).


Exemplo 2
Represente trigonometricamente o complexo z = –√3 + i.
Resolução:
a = –√3 e b = 1


A forma trigonométrica do complexo z = –√3 + i é z = 2*(cos150º + sen150º * i).

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Números Complexos - Matemática - Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro Da. "Forma Trigonométrica de um Número Complexo "; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/forma-trigonometrica-um-numero-complexo.htm>. Acesso em 26 de setembro de 2016.

PUBLICIDADE
PUBLICIDADE
PUBLICIDADE
  • SIGA O BRASIL ESCOLA